Skip to main content
Log in

Fast preparation of Bell state and W state with Rydberg superatom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the paper, we propose a scheme for fast preparation of Bell state and W state based on quantum Zeno dynamics and shortcuts to adiabaticity with Rydberg superatom. The quantum information is encoded in the collective state of superatom which contains n individual ladder-type Rydberg atoms. When the Rabi frequencies of classical fields are appropriately regulated, the scheme can be achieved within one step. Moreover, the effects of imperfections induced by leakage of the cavity and atomic spontaneous emission are also taken into account. The numerical simulation result shows that this scheme is robust against both cavity leakage and atomic spontaneous emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    ADS  Google Scholar 

  2. Löw, R., Weimer, H., Nipper, J., Balewski, J.B., Butscher, B., Büchler, H.P., Pfau, T.: An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B At. Mol. Opt. Phys. 45, 113001 (2012)

    ADS  Google Scholar 

  3. Jaksch, D., Cirac, J.I., Zoller, P., Rolston, S.L., Côté, R., Lukin, M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)

    ADS  Google Scholar 

  4. Tong, D., Farooqi, S.M., Stanojevic, J., Krishnan, S., Zhang, Y.P., Côté, R., Eyler, E.E., Gould, P.L.: Local Blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004)

    ADS  Google Scholar 

  5. Singer, K., Reetz-Lamour, M., Amthor, T., Marcassa, L.G., Weidemüller, M.: Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004)

    ADS  Google Scholar 

  6. Vogt, T., Viteau, M., Zhao, J., Chotia, A., Comparat, D., Pillet, P.: Dipole Blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97, 083003 (2006)

    ADS  Google Scholar 

  7. Honer, J., Löw, R., Weimer, H., Pfau, T., Büchler, H.P.: Artificial atoms can do more than atoms: deterministic single photon subtraction from arbitrary light fields. Phys. Rev. Lett. 107, 093601 (2011)

    ADS  Google Scholar 

  8. Urban, E., Johnson, T.A., Henage, T., Isenhower, L., Yavuz, D.D., Walker, T.G., Saffman, M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009)

    Google Scholar 

  9. Gaëtan, A., Miroshnychenko, Y., Wilk, T., Chotia, A., Viteau, M., Comparat, D., Pillet, P., Browaeys, A., Grangier, P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115–118 (2009)

    Google Scholar 

  10. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P., Büchler, H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010)

    Google Scholar 

  11. Dauphin, A., Müller, M., Martin-Delgado, M.A.: Rydberg-atom quantum simulation and Chern-number characterization of a topological Mott insulator. Phys. Rev. A 86, 053618 (2012)

    ADS  Google Scholar 

  12. Nguyen, T.L., Raimond, J.M., Sayrin, C., Cortinas, R., Cantatmoltrecht, T., Assemat, F., Dotsenko, I., Gleyzes, S., Haroche, S., Roux, G., Jolicoeur, T., Brune, M.: Towards quantum simulation with circular Rydberg atoms. Phys. Rev. X 8, 011032 (2018)

    Google Scholar 

  13. Maller, K.M., Lichtman, M.T., Xia, T., Sun, Y., Piotrowicz, M.J., Carr, A.W., Isenhower, L., Saffman, M.: Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Phys. Rev. A 92, 022336 (2015)

    ADS  Google Scholar 

  14. Su, S.L., Gao, Y., Liang, E.J., Zhang, S.: Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95, 022319 (2017)

    ADS  Google Scholar 

  15. Su, S.L., Shen, H.Z., Liang, E.J., Zhang, S.: One-step construction of the multiple-qubit Rydberg controlled-PHASE gate. Phys. Rev. A 98, 032306 (2018)

    ADS  Google Scholar 

  16. Su, S.L.: Rydberg quantum controlled-phase gate with one control and multiple target qubits. Chin. Phys. B 27, 401–407 (2018)

    Google Scholar 

  17. Su, S.L., Guo, F.Q., Tian, L., Zhu, X.Y., Yan, L.L., Liang, E.J., Feng, M.: Nondestructive Rydberg parity meter and its applications. Phys. Rev. A 101, 012347 (2020)

    ADS  Google Scholar 

  18. Brion, E., Pedersen, L.H., Saffman, M., Mølmer, K.: Error correction in ensemble registers for quantum repeaters and quantum computers. Phys. Rev. Lett. 100, 110506 (2008)

    ADS  Google Scholar 

  19. Han, Y., He, B., Heshami, K., Li, C.Z., Simon, C.: Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81, 052311 (2010)

    ADS  Google Scholar 

  20. Saffman, M., Mølmer, K.: Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009)

    ADS  Google Scholar 

  21. Wilk, T., Gaëtan, A., Evellin, C., Wolters, J., Miroshnychenko, Y., Grangier, P., Browaeys, A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    ADS  Google Scholar 

  22. Zhang, X.L., Isenhower, L., Gill, A.T., Walker, T.G., Saffman, M.: Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A 82, 030306 (2010)

    ADS  Google Scholar 

  23. Su, S.L., Tian, Y.Z., Shen, H.Z., Liang, E.J., Zhang, S.: Applications of the modified Rydberg antiblockade regime with simultaneous driving. Phys. Rev. A 96, 042335 (2017)

    ADS  Google Scholar 

  24. Shao, X.Q., Li, D.X., Ji, Y.Q., Wu, J.H., Yi, X.X.: Ground-state blockade of Rydberg atoms and application in entanglement generation. Phys. Rev. A 96, 012328 (2017)

    ADS  Google Scholar 

  25. Omran, A., Levine, H., Keesling, A., Semeghini, G., Wang, T.T., Ebadi, S., Bernien, H., Zibrov, A.S., Pichler, H., Choi, S., Cui, J., Rossignolo, M., Rembold, P., Montangero, S., Calarco, T., Endres, M., Greiner, M., Vuleti, V., Lukin, M.D.: Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019)

    ADS  MathSciNet  Google Scholar 

  26. Levine, H., Keesling, A., Omran, A., Bernien, H., Schwartz, S., Zibrov, A.S., Endres, M., Greiner, M., Vuletic, V., Lukin, M.D.: High-fidelity control and entanglement of Rydberg atom qubits. Phys. Rev. Lett. 121, 123603 (2018)

    ADS  Google Scholar 

  27. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    ADS  Google Scholar 

  28. Pritchard, J.D., Maxwell, D., Gauguet, A., Weatherill, K.J., Jones, M.P.A., Adams, C.S.: Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    ADS  Google Scholar 

  29. Lukin, M.D., Fleischhauer, M., Cote, R., Duan, L.M., Jaksch, D., Cirac, J.I., Zoller, P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    ADS  Google Scholar 

  30. Scully, M.O., Fry, E.S., Ooi, C.H.R., Wódkiewicz, K.: Directed spontaneous emission from an extended ensemble of \(N\) atoms: timing is everything. Phys. Rev. Lett. 96, 010501 (2006)

    ADS  Google Scholar 

  31. Yan, D., Liu, Y.M., Bao, Q.Q., Fu, C.B., Wu, J.H.: Electromagnetically induced transparency in an inverted-Y system of interacting cold atoms. Phys. Rev. A 86, 023828 (2012)

    ADS  Google Scholar 

  32. Yan, D., Cui, C.L., Liu, Y.M., Song, L.J., Wu, J.H.: Normal and abnormal nonlinear electromagnetically induced transparency due to dipole blockade of Rydberg excitation. Phys. Rev. A 87, 023827 (2013)

    ADS  Google Scholar 

  33. Liu, Y.M., Yan, D., Tian, X.D., Cui, C.L., Wu, J.H.: Electromagnetically induced transparency with cold Rydberg atoms: superatom model beyond the weak-probe approximation. Phys. Rev. A 89, 033839 (2014)

    ADS  Google Scholar 

  34. Zeiher, J., Schauß, P., Hild, S., Macrì, T., Bloch, I., Gross, C.: Microscopic characterization of scalable coherent Rydberg superatoms. Phys. Rev. X 5, 031015 (2015)

    Google Scholar 

  35. Beterov, I.I., Saffman, M., Yakshina, E.A., Tretyakov, D.B., Entin, V.M., Hamzina, G.N., Ryabtsev, I.I.: Simulated quantum process tomography of quantum gates with Rydberg superatoms. J. Phys. B At. Mol. Opt. Phys. 49, 114007 (2016)

    ADS  Google Scholar 

  36. Paris-Mandoki, A., Braun, C., Kumlin, J., Tresp, C., Mirgorodskiy, I., Christaller, F., Büchler, H.P., Hofferberth, S.: Free-space quantum electrodynamics with a single Rydberg superatom. Phys. Rev. X 7, 041010 (2017)

    Google Scholar 

  37. Misra, B., Sudarshan, E.C.G.: The Zenos paradox in quantum theory. J. Math. Phys. 18, 765 (1977)

    ADS  MathSciNet  Google Scholar 

  38. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295–2300 (1990)

    ADS  Google Scholar 

  39. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12–19 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Facchi, P., Pascazio, S.: Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A Math. Theor. 41, 493001 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. N. J. Phys. 12, 023040 (2010)

    Google Scholar 

  44. Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)

    ADS  Google Scholar 

  45. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    ADS  Google Scholar 

  46. Shao, X.Q., Wu, J.H., Yi, X.X., Long, G.L.: Dissipative preparation of steady Greenberger–Horne–Zeilinger states for Rydberg atoms with quantum Zeno dynamics. Phys. Rev. A 96, 062315 (2017)

    ADS  Google Scholar 

  47. Ji, Y.Q., Shao, X.Q., Yi, X.X.: Fusing atomic W states via quantum Zeno dynamics. Sci. Rep. 7, 1378 (2017)

    ADS  Google Scholar 

  48. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridg University Press, Cambridge (1997)

    Google Scholar 

  49. Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    ADS  Google Scholar 

  50. Guerlin, C., Brion, E., Esslinger, T., Mølmer, K.: Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010)

    ADS  Google Scholar 

  51. Zhang, X.F., Sun, Q., Wen, Y.C., Liu, W.M., Eggert, S., Ji, A.C.: Rydberg polaritons in a cavity: a superradiant solid. Phys. Rev. Lett. 110, 090402 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants No. 11947078, 11947111, 11947085, 11674037, 11704042), the LiaoNing Revitalization Talents Program (Grant No. XLYC1807206), the Starting Scientific Research Foundation for Doctors of LiaoNing Province (Grant No. 2020-BS-234), the Natural Science Foundation of LiaoNing Province (Grant No. 20170540010), the Program for LiaoNing Innovative Talents in University (Grant No. LR2016001) and the Program of the Educational Office of LiaoNing Province of China (Grant No. LQ2017006)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y.Q., Liu, Y.L., Li, H. et al. Fast preparation of Bell state and W state with Rydberg superatom. Quantum Inf Process 19, 421 (2020). https://doi.org/10.1007/s11128-020-02928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02928-7

Keywords

Navigation