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True experimental reconstruction of quantum states and processes via convex
optimization
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We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary
quantum states and unknown quantum processes on a two-qubit NMR quantum information pro-
cessor. Standard protocols for quantum state and quantum process tomography are based on linear
inversion, which often result in an unphysical density matrix and hence an invalid process matrix.
The CCO method on the other hand, produces physically valid density matrices and process ma-
trices, with significantly improved fidelity as compared to the standard methods. The constrained
optimization problem is solved with the help of a semi-definite programming (SDP) protocol. We
use the CCO method to estimate the Kraus operators and characterize gates in the presence of
errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad mas-
ter equation in conjunction with the CCO method to completely characterize the noise processes

present in the NMR qubits.

PACS numbers: 03.65.Wj, 03.67.Lx, 03.67.Pp, 03.67.a

I. INTRODUCTION

Recent decades have seen tremendous advances in re-
search to engineer high fidelity devices based on quan-
tum technologies[I]. Characterizing quantum states and
quantum processes in such devices is essential to eval-
uating their performance and is typically achieved via
quantum state tomography (QST) [2} B] and quantum
process tomography (QPT)[M, 5] protocols. QST and
QPT are statistical processes which comprise two basic
elements[6]: (1) a set of measurements and 2) an estima-
tor which maps the outcomes of the measurements to an
estimate of the unknown state or process. Since the en-
semble size is finite and systematic errors are inevitable,
there is always some ambiguity associated with the esti-
mation of an experimentally created state, which often
leads to an unphysical density matrix [7, [§]. It is hence
imperative to design efficient QST and QPT protocols
which result in physically valid density matrices.

Several tomography protocols have been proposed for
both finite- and infinite-dimensional systems, mainly
based on the least-squares linear inversion method[9-
IT]. They have been successfully demonstrated on vari-
ous physical systems such as nuclear spin ensembles [12]
and photon polarization states [I3]. Several estima-
tion strategies for QST have been proposed as alter-
natives to the standard methods, such as maximum
likelihood estimation (MLE) [14], model averaging ap-
proach [15], gradient approach for self-guided QST [16]
and compressed sensing QST [I7]. Similar protocols have
been proposed for QPT, which include ancilla-assisted
QPT [18], simplified QPT [19], selective QP T using quan-
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tum 2-design states [20], self-consistent QPT [2I], com-
pressed sensing QPT [22], and adaptive measurement-
based QPT [23]. The experimental implementations of
these QST and QPT protocols include hardware plat-
forms such as NMR [24H20], superconducting qubits [27],
nitrogen vacancy centers in diamond [28, 29] and linear
optics [30, BI]. A simplified QPT method was devel-
oped to experimentally simulate dephasing channels on
an NMR quantum processor [32]. All these methods have
been reviewed with respect to their physical resource re-
quirements and their efficiency [33].

Despite numerous tomography approaches in exis-
tence, most of them do not produce a valid density or
process matrix after implementation. On the other hand,
protocols such as adaptive measurements and self-guided
tomography which produce valid states and processes,
involve a large number of projective measurements [34]
which are experimentally and computationally resource-
intensive. In other methods such as the MLE protocol,
one needs to a priori know the noise distribution present
in the system [35]. In this work, we have experimen-
tally implemented a method for QST and QPT that re-
solves the issue of the unphysicality of the experimen-
tally reconstructed density matrix and process matrix.
The standard linear inversion based tomography prob-
lem has been transformed into a constrained convex op-
timization (CCO) problem [36] 37]. The CCO method
is based on optimizing a least squares objective function,
subject to the positivity condition as a nonlinear con-
straint and the unit trace condition as a linear constraint.
The advantages of the CCO method are that it does not
require any prior knowledge about the system and does
not use extra ancillary qubits. We demonstrated these
advantages of the CCO method by using it to charac-
terize unknown two-qubit quantum states and processes
on an NMR quantum information processor. A criterion
termed ‘state deviation’ was used to assess how well the
reconstructed quantum process fits the result of the to-
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mography. We efficiently computed the complete set of
valid Kraus operators corresponding to a given quantum
process via unitary diagonalization of the experimentally
reconstructed positive process matrix. Finally, a Lind-
bladian approach was used in conjunction with the CCO
method to study NMR noise processes inherent in the
system.

This paper is organized as follows: In Section [[I] we
describe the formulation of the CCO problem in the con-
text of QST, and present experimental results for the
characterization of various two-qubit quantum states. In
Section [T} we apply the CCO method to QPT and de-
scribe experiments to characterize several quantum pro-
cesses of a two-qubit system. In Section [[ITA] the CCO
QPT method is used to characterize the noise channels
which are active during decoherence of two NMR qubits.
Section [[ITB]summarizes a comparison of the CCO QPT
method with standard QPT and with simplified QPT
methods. Section [[V] contains a few concluding remarks.
The complete set of Kraus operators corresponding to a
given quantum process, obtained via the CCO method,
is given in Appendix[A]

II. QUANTUM STATE TOMOGRAPHY WITH
CONSTRAINED CONVEX OPTIMIZATION

Quantum state tomography (QST) is a method to com-
pletely characterize an unknown quantum state [2]. On
an ensemble quantum computer such as NMR, standard
QST is carried out by measuring the expectation values
of a fixed set of basis operators[38], with the n-qubit den-
sity operator p being represented in the tensor product
of the Pauli basis:
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where cgg..0 = 1/2", 0y denotes the 2 x 2 identity ma-
trix and 0,7 = 1,2,3 are single-qubit Pauli operators.
By choosing appropriate experimental settings, one can
determine all expectation values ¢;;. ,[39] and thereby
reconstruct the density matrix.

The standard protocols for QST involve solving linear
system of equations of the form

Az =10 (2)

where matrix A is referred to as a fixed coefficient ma-
trix, the vector x contains elements of the density ma-
trix which needs to be reconstructed and vector b con-
tains actual experimental dataf3]. Omne can solve for z
by simply inverting the above equation and a p can be
reconstructed which is Hermitian and has unit trace, but
there is no guarantee that it will be positive, since the
positivity constraint for a density matrix to be valid is
not explicitly included in the standard QST protocol.
To always obtain a positive semi-definite density ma-
trix, the linear inversion-based standard QST problem

can hence be reformulated as a CCO problem using semi-
definite programming (SDP) as follows:

min ||Az — b||,
x

st. Tr(p) =1 (3)
p=0

The least-squares objective function given in Eq[3]is de-
fined in Reference [3]. The SDP problem stated in Eq/3]
was formulated using the YALMIP[40] MATLAB pack-
age which employs SeDuMi[4I] as the SDP solver. For
two qubits, the objective function has to be optimized
over 16 real variables. After solving the SDP problem, a
valid density matrix is obtained from a least squares fit to
the experimental data, which reveals the true quantum
state.

To demonstrate the efficacy of CCO-based QST, we
experimentally prepared and tomographed several two-
qubit quantum states. All the experiments were per-
formed at room temperature on an ensemble of '3C-
enriched chloroform molecules dissolved in acetone-D6
at room temperature on a Bruker Avance III 600 MHz
FT-NMR spectrometer equipped with a QXI probe. We
encoded two qubits using the nuclear spins 'H and 13C.
The T; spin-lattice relaxation time for proton and carbon
are found to be 8 sec and 16.5 sec respectively, while the
Ty spin-spin relaxation time for proton and carbon was
measured to be 2.9 sec and 0.3 sec, respectively. Qubit-
selective rf pulses of desired phase were used to imple-
ment local rotation gates; a 5 rf pulse on 'H was of
duration 9.4 us at a 18.14 W power level, while a § rf
pulse on '3C was of duration 15.608 us at a 179.47 W
power level. The molecular structure, NMR parameters,
state initialization and NMR circuits to achieve various
quantum gates can be found in Reference [26]. The fi-
delity between the theoretically expected (p,}.,) and the
experimentally reconstructed (pey,;) quantum state were
computed using the measure[42]:

| Tr [pexpt p:heo] |

(4)

]:(pexpta ptheo) = T T
\/’I\r[pexptpexpt]Tr[ptheoptheo]

The fidelities computed using CCO QST for several dif-
ferent quantum states showed some improvement over
those computed using standard QST. However, the main
advantage of the CCO QST method is that the experi-
mentally reconstructed density matrix is always positive
semi-definite and hence always represents a valid quan-
tum state. The results for various types of states are
tabulated in Table [l



TABLE I. Eigenvalues for the two-qubit density matrix, ob-
tained from experimentally reconstructed density matrices via
standard and CCO QST.

Quantum state

Standard
-0.0488, -0.0171,| 0, 0.0225,

CCO

00)
0.0499, 1.0160 |0, 0.9775
o1) -0.0429, -0.0222,| 0, 0.0067,
0.0364, 1.0287 |0, 0.9933
110) -0.1486, -0.0911,| 0, 0.0807,
0.1915, 1.0482 |0, 0.9193
1) -0.1457, -0.0955,| 0, 0.0808,

0.1933, 1.0480 |0, 0.9192
-0.0822, -0.0456,| 0, 0.0105,

75(100) +[11))

V2 0.0508, 1.0778 |0, 0.9895

-0.0950, -0.0370,| 0, 0.0142
-5 (]01) —[10 ’ 1 ’
valon — 1) 0.0624, 1.0696 | 0, 0.9858
2 (J00) - 1) -0.1315, -0.0455,| 0, 0.0592,

0.1180, 1.0591 |0, 0.9408
-0.1175, -0.0278,| 0, 0.0397,
0.0910, 0.0543 |0, 0.9603
-0.0892, -0.0493,| 0, 0.0255,
0.1060, 1.0326 |0, 0.9745
-0.0587, -0.0166,| 0, 0.0375,
0.0683, 1.0070 |0, 0.9625
-0.1017, -0.0730,| 0, 0.0381,
0.1209, 1.0538 |0, 0.9619
-0.0884, -0.0469,| 0, 0.0303,
0.1093, 1.0260 |0, 0.9697
-0.0936, -0.0436,| 0, 0.0267,
0.0987, 1.0385 |0, 0.9733
-0.1122, -0.0962,| 0, 0.0544,
0.1549, 1.0536 |0, 0.9456
-0.0898, -0.0420,| 0, 0.0304,
0.1028, 1.0290 |0, 0.9696
-0.0862, -0.0379,| 0, 0.0329,
0.0837, 1.0405 |0, 0.9671
-0.0823, -0.0293,| 0, 0.0293,
0.0974, 1.0142 |0, 0.9707
-0.0917, -0.0619,| 0, 0.0298,
0.1120, 1.0416 |0, 0.9702
-0.0728, -0.0110,| 0, 0.0298,
0.0770, 1.0068 |0, 0.9702
-0.0828, -0.0347,| 0, 0.0234,
0.0904, 1.0271 |0, 0.9766
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III. QUANTUM PROCESS TOMOGRAPHY
WITH CONSTRAINED CONVEX
OPTIMIZATION

Quantum process tomography (QPT) aims to charac-
terize an unknown quantum process. Any quantum state

p undergoing a physically valid process can described by a
completely positive (CP) map, and an unknown process €
can be described in the operator-sum representation [43]:

dQ
e(p) = Y EipP)] (5)

where E;’s are the Kraus operators satisfying >, ElEZ =
I. The Kraus operators can be expanded using a fixed
complete set of basis operators {4;} as

d2

> XmnAmpAl, (6)

m,n=1

e(p) =

where Xmn = Zl aimay, is called the process matrix and
is a positive Hermitian matrix satisfying the trace pre-
serving constraint >, . Xmn Al A, = T [4, 44]. The
dimension of the y matrix is specified by n* —n? param-
eters for a Hilbert space of dimension n, and hence the
computational resources required for its determination
scale exponentially with the number of qubits. The x
matrix can be experimentally determined by preparing a
complete set of linearly independent basis operators and
and estimating the output state after the map action and
finally computing all the elements of x,,., from these ex-
perimentally estimated output states via linear equations
of the form:

Bx = A (7)

where 3 is a coefficient matrix, vector y contains the el-
ements {Xmn} which are to be determined and vector
A is the experimental data [44]. Once the x matrix is
determined, it can be diagonalized by a unitary trans-
formation U and the Kraus operators can be determined
from this diagonalized x matrix using

B =\/di Y UjA; (8)

where d; are eigenvalues of x. This reconstruction of the
full set of Kraus operators only works if the experimen-
tally determined y matrix is positive semidefinite i.e. if
The y matrix obtained from standard QPT protocols is
Hermitian and has unit trace, but there is no assurance
that it will be positive. Standard QPT methods could
hence lead to an unphysical density matrix which implies
that the inversion was not able to optimally fit the ex-
perimental data, and more constraints would have to be
used to reconstruct the y matrix. One viable alternative
is the CCO method of reconstruction, which always leads
to a valid process matrix. Convex optimization leads to a
global optimization of the model parameters which best
fit the a priori information. This circumvents the prob-
lem of unphysicality in standard QPT methods and the
genuine action of noise channels on different input states
can be correctly estimated. In case of completely pos-
itive trace preserving (CPTP) maps the mathematical
formulation of the CCO method for QPT is given by:



min 18x — Al
s.t. Z Xmn AL Ay =T (9)
x=>0

The CCO problem given in Eq.[J]can be solved efficiently
using SDP [40} [41]. For two qubits we used 16 linearly in-
dependent density operators corresponding to quantum
states (this choice is not unique): {|00), |01}, |0+), |0—),
|10>> |11>7 |1+>’ |1_>7 ‘ + 0>7 | + 1>’ | + +>7 | + _>7 | - O>v
| = 1), | = +) [ = =)} where |+) = (|0) + [1))/v2 and
|-) = (|0) +4|1))/v/2. The dimension of the y matrix
is 16 x 16, the number of real independent parameters
is 255, and the vector x is of dimensions 256 x 1 (ex-
cluding the trace condition). We have to hence optimize
the objective function over 256 real variables. After solv-
ing the SDP problem, we obtain a valid x matrix, which
can be fitted to the experimental data to reveal the true
quantum process.

TABLE II. Eigenvalues obtained from experimental x matri-
ces constructed via standard and CCO QPT.

Quantum | Standard QPT CCO QPT
operation
1.0117, 0.1331, -0.1421, 0.1247,/ 0.0077, 0.0201,
CNOT 0.0934, 0.0860, 0.0716, 0.0541, 0.0245, 0.0438,
0.0668, -0.1135, -0.0935, -0.0838,| 0.9038, 0,0,0
-0.0315, -0.0672, -0.0598, -0.0503| 0,0,0,0,0,0,0,0
0.9972, 0.1435, -0.1305, 0.1198,| 0.0077, 0.0166,
C-RT 0.1061, 0.0971, 0.0837, 0.0746, 0.0315, 0.0397,
0.0553, -0.0119, -0.1044, -0.0838,| 0.9045, 0,0,0,
-0.0415, -0.0767, -0.0578, -0.0639| 0,0,0,0,0,0,0,0
1.0087, 0.1205, -0.0547, 0.0581,| 0.0166, 0.0357,
Identity 0.0355, -0.0441, -0.0122, -0.0385, 0.9477, 0,0,0,0,
-0.0338, -0.0271, -0.0213, -0.0151,| 0,0,0,0,0,0,0,
0.0019, 0.0006, -0.0067, 0.0281] 0,0

The eigenvalues of experimentally constructed y ma-
trices computed via standard and CCO QPT for the
control-R7, Identity and CNOT operators are depicted
in Table [ As seen from Table [[I} the experimentally
estimated x matrix via standard QPT has some nega-
tive eigenvalues which make it unphysical and it does not
correspond to a valid quantum operation. On the other
hand, all the eigenvalues of experimentally estimated x
matrix via CCO QPT are positive, which makes it phys-
ical and depicts a valid quantum map.

The fidelity of experimentally constructed Xexpt matrix
with reference to theoretically expected Yitnheo matrix was
calculated using the measure[20]:

|TI‘ [XexthIheo] I

]:(Xexpt? Xtheo) (10)

\/TI' [Xixpt chpt]Tr [theo Xtheo]

The fidelities calculated via standard and CCO methods
are given in Table [[TT} In all three cases, the fidelity F
obtained via CCO method is greater than 0.98, which
shows the efficacy of CCO QPT.

TABLE III. Two-qubit gate fidelities obtained via standard
QPT and CCO QPT.

Quantum process

Standard QPT CCO QPT

Identity 0.9809 0.9959
CNOT 0.9313 0.9817
control- R} 0.9269 0.9831

State fidelity cannot be used as a measure of deter-
mining how well the reconstructed process matrix fits the
experimental data, as the first element of the density ma-
trix dominates the trace. We hence used another metric
termed “Average state deviation” A,y to characterize
the quantum process [37]:

abs(py; — pij))?
A:Z( (plin le)) (11)
ij
where abs(z) denotes the absolute value of complex num-
ber z and {p,;;} are elements of the predicted density
matrix using experimentally constructed y matrix while
{pi;} are elements of ideal gate output. A, is then
computed by averaging over all the input states. The
smaller the value of Ay, the better the process matrix
fits the raw data, and the better is the performance of
the QPT method. The average state deviation A,y is
given in Table [[V] and it can be seen that the perfor-
mance of CCO QPT is much better than standard QPT

as Agry << Ajf,dg for all three quantum gates.

TABLE IV. Average state deviation computed from standard
(As%L) and from CCO (Ag2) methods.

Quantum process AZ&% Afve
Identity 0.0020  4.3414e-04
CNOT 0.0097 0.0021
control-R} 0.0101 0.0018

The QPT protocol can be used to estimate the Kraus
operators from the experimental data, which aid in char-
acterizing the corresponding quantum gates in presence
of various systematic errors [28]. Three types of er-
rors can occur in the experimentally constructed den-
sity/process matrices: (1) statistical errors, (2) system-
atic errors, and (3) errors due to noisy processes. To
investigate the primary source of errors for our experi-
mentally constructed density or process matrices, we nu-
merically simulated the CNOT and control-R] gates in
presence of various noisy channels [44, 45]. The com-
plete set of Kraus operators for all three gates are given
in Appendix [A] It turns out that the magnitude of extra
elements that we get in the numerically simulated process
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FIG. 1. Tomographs denoting the real (top panel) and imag-
inary (bottom panel) parts of the x matrix for system evolv-
ing under decoherence for a time ¢ = 0.05 s. The tomographs
in the first and second columns represent the experimentally
reconstructed x matrix obtained via CCO QPT and via nu-
merical simulation of the decoherence model.

CCO
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FIG. 2. Tomographs denoting the real (top panel) and imagi-
nary (bottom panel) parts of the x matrix for system evolving
under decoherence for a time ¢t = 0.5 s. The tomographs in the
first and second columns represent the experimentally recon-
structed x matrix obtained via CCO QPT and via numerical
simulation of the decoherence model.

matrix is of the order of 104 to 1073, while the mag-
nitude of extra elements of experimentally reconstructed
process matrix using CCO QPT is the order of 1072
This clearly indicates that the primary source of error in
gate implementation is not decoherence but rather var-
ious systematic errors and imperfect state preparation
due to pulse miscalibration or rf inhomogeneity [44].

A. DMarkovian Quantum Process Tomography

Standard QPT focuses on making predictions about
the output states given an arbitrary set of initial states.
However, the standard method is not able to describe
the full system dynamics. In the regime of Markovian dy-
namics, one can construct a valid master equation (called

Simulation

FIG. 3. Tomographs denoting the real (top panel) and imagi-
nary (bottom panel) parts of the x matrix for system evolving
under decoherence for a time ¢ = 5 s. The tomographs in the
first and second columns represent the experimentally recon-
structed x matrix obtained via CCO QPT and via numerical
simulation of the decoherence model.

the Lindblad master equation) which describes time evo-
lution of the system, via “snapshots” of the system cap-
tured at different time points. In such a scenario, the
master equation contains separate terms to describe uni-
tary and non-unitary evolution [28]:

dp Ly t i
— = - (IL L + [Lg, pL 12
dt kz:: kP, [ ks P k]) ( )

\V]

where Lj; are Lindblad operators describing noise pro-
cesses.

We now proceed to use CCO QPT to characterize the
noise channels acting on the two-qubit NMR system. The
relevant time scales are 1/(2J) ~ 2.33 msec, T1 ~ 15 sec
and Ty ~ 0.5 sec where J is scalar spin-spin coupling con-
stant, and T'; and T are in the range of the longitudinal
(T1) and transverse (T3) relaxation times. We chose four
different time intervals: t; = 0.05 s, to = 0.58,t3 =5 s
and t4 = 15 s, and computed the x matrix for these
time points. The real and imaginary parts of the tomo-
graphed y matrix at the time intervals t = 0.05,0.5,5 s
are shown in Figs. respectively. We compared our
experimental results to ypum i-e. the x matrix obtained
by numerically simulating the decoherence model. The
decoherence model took into account the internal Hamil-
tonian of the system, as well as phase damping and gener-
alized amplitude damping channels acting independently
on each qubit. We further studied the evolution of two-
qubit maximally entangled Bell states under natural de-
coherence using QST and then compared the QST re-
sults with states predicted using CCO QPT as well as
those obtained via numerical simulation of the decoher-
ence model. To investigate the goodness of fit of the
decoherence model considered, we calculated process fi-
delity between experimentally constructed x matrix and
the numerically simulated Yum for each time point. For
the time intervalst = 0.05 s, 0.5 s, 5 s, and 15 s, the calcu-



lated fidelities are 0.9901, 0.8441, 0.7245 and 0.6724, re-
spectively. This implies that, at small time intervals the
process can be modeled well with the decoherence model
considered, whereas at longer time intervals the deco-
herence model needs to be modified by including more
terms[45].

We also studied the behavior of the maximally entan-
gled Bell states: |B1) = (|00) + [11))/v/2, |Ba) = (|01) +
10))/v2, |Bs) = (|00) — [11))/v2 and [B4) = (]01) —
|10))/+/2, under decoherence. We prepared these states
with experimental fidelities of 0.9968, 0.9956, 0.9911 and
0.9942, respectively. The fidelity between actual evolved
state (constructed via CCO QST) and output state pre-
dicted via QPT (both using the experimental and numer-
ical x matrix) is given in Table It is evident that for
short time intervals (upto t ~ O(107!) s) the decoherence
model is able to predict the dynamics of maximally en-
tangled Bell states with fidelities > 0.9, while CCO QPT
is able to predict the true dynamics on all timescales,
with good fidelity.

TABLE V. The fidelity difference between an actual evolved
Bell state (denoted by |B;)) computed via CCO QPT, and
predicted output state QPT. The first column represents the
different time intervals for which evolution under the deco-
herence process was considered.

Process |B1) |B2) |Bs) |B4)
t—0.05 sec CCO 0.9672 | 0.9808 | 0.9767 | 0.9902
Numerical| 0.9822 | 0.9921 | 0.9844 | 0.9952
t—0.5 sec CCO 0.9884 | 0.9899 | 0.9891 | 0.9757
Numerical| 0.9785 | 0.9795 | 0.9770 | 0.9831
=5 sec CCO 0.9925 | 0.8410 | 0.9946 | 0.8866
Numerical| 0.6658 | 0.7193 | 0.6642 | 0.7177
(=15 sec CCO 0.9964 | 0.9228 | 0.9959 | 0.9031
Numerical| 0.6060 | 0.7121 | 0.6069 | 0.7126

B. Comparison of CCO QPT with Other Protocols

More often than not, standard QPT protocols lead
to unphysical density and processes matrices, which is
a major disadvantage. CCO QPT on the other hand, al-
ways produces valid density and process matrices, which
represent the true quantum state and quantum process.
While the experimental complexity is the same for both
the methods, the computed state fidelities are better via
CCO QPT. The state deviation obtained via CCO QPT
is much smaller than that obtained via standard QPT,
which indicates its better performance. CCO based QPT
allows us to accurately predict the operation of a quan-
tum gate on any arbitrary input state. The experimen-
tally reconstructed x matrix via CCO QPT allows us to
efficiently compute all Kraus operators, while standard

QPT does not even yield valid Kraus operators.

The simplified QPT protocol [32] requires prior knowl-
edge about the form of the system-environment inter-
action which is in general not possible. However, CCO
QPT does not require any kind of prior knowledge about
the system-environment interaction. Simplified QPT is
not universal while CCO QPT is universal and is applica-
ble to any physical system of arbitrary dimensions. Both
methods produce a valid quantum map and are able to
construct all Kraus operators.

IV. CONCLUSIONS

In this study, we have used a constrained convex opti-
mization (CCO) method to completely characterize vari-
ous quantum states and quantum processes of two qubits
on an NMR quantum information processor. Convex op-
timization is a search procedure over all operators that
satisfies experimental and mathematical constraints in
such a way that the solutions that emerge are globally
optimal. The results for QST and QPT tomography us-
ing CCO, have been compared with those obtained using
the standard linear inversion-based methods. Our experi-
ments demonstrate that the CCO method produces phys-
ically valid density and process matrices, which closely
resemble the quantum state being reconstructed or the
quantum process whose evolution is being mapped, re-
spectively. Furthermore, the fidelities obtained via the
CCO method are higher as compared to the standard
method. We have used the experimentally constructed
process matrix to also compute a complete set of Kraus
operators corresponding to a given quantum process.

If quantum states are prepared with high fidelity, any
discrepancies between the experimental data and recon-
structed process matrix cannot be attributed to noise.
In such situations, CCO QPT turns out to be a robust
method to investigate the nature of the noise processes
present in the quantum system. We have assumed system
Markovian dynamics and used the CCO method to char-
acterize the decoherence processes inherent to the NMR
system. Ongoing efforts in our group include using the
CCO method to characterize decoherence present in the
system and hence design targeted state preservation pro-
tocols. Our results are a step forward in the direction of
estimating noise and improving the fidelity of quantum
devices.
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Appendix A: Kraus operators

The complete set of valid Kraus operators for the two-qubit system have been experimentally computed using the
CCO QPT method. The Kraus operators corresponding to the Identity, CNOT gate and control-R] gate are given

below:

e Kraus operators corresponding to Identity gate

—0.0308 + 0.0457¢ —0.0028 — 0.0077%
—0.0393 + 0.06337 —0.0055 — 0.0060¢ 0.0550 + 0.1068%

0.0070 + 0.0095:
0.0755 — 0.0678¢
0.0395 + 0.0187:

0.0203 4 0.00421
0.0850 + 0.0079:

[0.0571 + 0.0943i  —0.0133 + 0.0201i
By — —0.0071 + 0.02717 —0.0082 + 0.0968:
0.0189 — 0.1154¢  0.0269 — 0.0103¢
| 0.0481 —0.0087:  0.0723 — 0.0485:
[—0.0442 — 0.9758i —0.0014 + 0.0418i
By — 0.0005 — 0.0271¢  —0.0550 — 0.9813¢
0.0101 — 0.0239¢  0.0088 — 0.0002¢
| —0.0096 + 0.0017:  0.0101 — 0.0205:

e Kraus operators corresponding to CNOT gate

0.0344 — 0.00427  0.0389 + 0.01301
—0.0039 — 0.00387 —0.0208 — 0.0054%
0.0548 + 0.01947 —0.0023 — 0.0251¢
0.0208 4 0.0094:  0.0654 4 0.0264¢

0.0124 4 0.0245:
0.0727 + 0.0709¢

0.0065 — 0.0008¢
—0.0132 — 0.0155:

E =
27 10.0323 — 0.0020i —0.0552 + 0.0537:
0.0400 + 0.08117 —0.0112 + 0.0281i
0.0907 — 0.0140i  —0.0599 + 0.0491
—0.0567 4 0.0142i —0.0978 — 0.0171
3 0.0267 + 0.0135i  —0.0221 + 0.0546i
~0.0269 — 0.0463i —0.0340 + 0.0427i
0.1786 4+ 0.0344i  0.1327 — 0.0629;
0.0052 — 0.0290i
E, =

—0.0346 + 0.0199: 0.0383 — 0.0361%

—0.0024 — 0.01697 —0.0415 — 0.0293¢ 0.1058 — 0.00507

0.0706 4+ 0.9517¢  —0.0369 4 0.0847¢
—0.0139 — 0.10527 —0.1412 + 0.94127
—0.0187 + 0.01697 —0.0218 — 0.0073%
—0.0065 — 0.02247 —0.0537 + 0.02697

—0.1264 — 0.0353¢ 0.0174 — 0.0797%

0.0626 + 0.1056¢ 0.0022 4+ 0.0078¢

0.0279 — 0.0575¢
0.0153 + 0.0005%

0.0052 + 0.0001%
0.0451 — 0.0399¢

—0.1932 — 0.0604i —0.0069 — 0.0085 |
0.0173 — 0.0019¢ —0.1724 — 0.0574¢
—0.0281 — 0.1005% 0.0091 — 0.0038%

—0.0040 + 0.0067: —0.0220 — 0.0980 |
0.0103 + 0.025% —0.0100 — 0.0007; |
0.0095 + 0.0029¢:  0.0129 4 0.0272¢

—0.0190 — 0.96173
0.0242 — 0.04127

0.0233 + 0.04044
0.0021 — 0.96717 |

—0.0068 + 0.0035:
—0.0494 + 0.0543¢
—0.0714 + 0.01372
—0.0162 + 0.0148:

—0.0691 — 0.00031
0.0125 + 0.0320¢
—0.0094 — 0.0117%
0.0221 4- 0.0124:

—0.0508 — 0.12837 —0.0079 + 0.02057
—0.0941 + 0.01687 0.0494 — 0.0326%

0.1017 + 0.0139¢ —0.0577 — 0.0248¢
0.0603 + 0.0204¢ —0.0381 — 0.0261¢

0.0581 + 0.0467¢  0.0292 4 0.0058¢

0.0109 + 0.0093¢ —0.0310 — 0.1036¢
—0.0700 + 0.05957 —0.0752 — 0.04042
0.0765 + 0.0205¢ —0.1294 4 0.0564¢

0.0228 + 0.0866¢ —0.0018 — 0.0201%
—0.0397 + 0.0932¢
—0.1466 — 0.02227
0.1214 — 0.1034:

0.1008 — 0.0337¢

0.0250 + 0.0166¢ —0.0245 — 0.0130¢
—0.0442 — 0.02807 —0.0077 — 0.00401
—0.0414 + 0.02157 —0.0410 + 0.93803

0.0297 + 0.9390¢ —0.0516 + 0.0110¢



e Kraus operators corresponding to control-R} gate

E =

Ey =

Ey =

Es

[ 0.0012 + 0.0210i
0.0359 + 0.0089i

0.0165 + 0.01344
0.0251 — 0.0080¢

—0.0744 + 0.0001¢
—0.0654 — 0.0831%

—0.0234 + 0.0153: —0.0354 — 0.02117 —0.0461 + 0.0131%

| 0.0365 + 0.0369:

[ 0.0153 + 0.0286i
—0.0141 + 0.0290i
0.0058 + 0.00044
| —0.0192 + 0.0136i

[ 0.1537 + 0.0345i
—0.0074 + 0.0235i
0.0178 + 0.0428i
| —0.0239 — 0.0132;

[ 0.0686 — 0.0160i
~0.1221 — 0.0570i
0.0651 + 0.02414
| —0.0239 + 0.0021

[ 0.1841 + 0.9399i
~0.0949 — 0.0906i
0.0077 — 0.0108i

| —0.0076 — 0.0216

—0.0233 + 0.0167:

0.0001 — 0.1142¢
—0.0039 — 0.03231
—0.0092 — 0.09631
—0.0308 + 0.0298:

0.0717 + 0.02574
—0.1425 — 0.0207¢
—0.0375 — 0.01684
—0.0232 + 0.0146¢

—0.1101 — 0.00361
—0.0450 + 0.0133¢
0.0643 — 0.0430¢
—0.0537 — 0.0392¢

—0.0704 + 0.10261
0.0979 + 0.9445¢
—0.0075 + 0.0042:
—0.0092 — 0.00861

—0.0068 + 0.0143:

—0.0595 — 0.02457
—0.0097 + 0.0340:
0.0556 +- 0.02041
0.0407 + 0.0222:

0.0169 — 0.0805¢
—0.0232 + 0.0145:
0.0243 — 0.0328¢
0.0017 — 0.1398¢

—0.0419 — 0.07643
—0.0657 + 0.0230:
—0.1377 + 0.16141
—0.0594 — 0.0210z

0.0143 + 0.0058:
0.0084 +- 0.01341
—0.0249 + 0.0765:
0.9304 — 0.0835¢

—0.0121 — 0.0364i |
—0.0097 — 0.02514
0.0004 + 0.0068i
0.0125 — 0.0159i |

0.0153 — 0.0085; |
0.1150 + 0.0166i
—0.0167 — 0.0196i
—0.1054 — 0.04054 |

—0.0006 — 0.0094 |
0.0001 — 0.0276i
—0.0154 + 0.1688i
0.0512 — 0.0880i |

—0.0257 — 0.0232i |
0.0491 + 0.0496i
—0.0061 + 0.0345i
0.0213 + 0.1907i |

0.0012 + 0.00044 |
—0.0049 + 0.0210i
0.9336 — 0.0790i
0.0338 + 0.0811i |
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