Skip to main content
Log in

A systematic method to building Dirac quantum walks coupled to electromagnetic fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum walk whose continuous limit coincides with Dirac equation is usually called a Dirac quantum walk (DQW). A new systematic method to build DQWs coupled to electromagnetic (EM) fields is introduced and put to test on several examples of increasing difficulty. It is first used to derive the EM coupling of a 3D walk on the cubic lattice. Recently introduced DQWs on the triangular lattice are then re-derived, showing for the first time that these are the only DQWs that can be defined with spinors living on the vertices of these lattices. As a third example of the method’s effectiveness, a new 3D walk on a parallelepiped lattice is derived. As a fourth, negative example, it is shown that certain lattices like the rhombohedral lattice cannot be used to build DQWs. The effect of changing representation in the Dirac equation is also discussed. Furthermore, we show the simulation of the established DQWs can be efficiently implemented on a quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Our third direction across this lattice will still be the same as the x-direction in the square lattice.

  2. This works similarly for b and d.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    ADS  Google Scholar 

  2. Alderete, C.H., Singh, S., Nguyen, N.H., Zhu, D., Balu, R., Monroe, C., Chandrashekar, C.M., Linke, N.M.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11(1), 1–7 (2020)

    Google Scholar 

  3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Arnault, P., Debbasch, F.: Landau levels for discrete-time quantum walks in artificial magnetic fields. Physica A Stat. Mech. Appl. 443, 179–191 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Arnault, P., Debbasch, F.: Quantum walks and discrete gauge theories. Phys. Rev. A 93(5), 052301 (2016)

    ADS  MATH  Google Scholar 

  6. Arnault, P., Debbasch, F.: Quantum walks and gravitational waves. Ann. Phys. 383, 645–661 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)

    ADS  MathSciNet  Google Scholar 

  8. Arrighi, P., Di Molfetta, G., Márquez-Martín, I., Pérez, A.: Dirac equation as a quantum walk over the honeycomb and triangular lattices. Phys. Rev. A 97(6), 062111 (2018)

    ADS  MathSciNet  Google Scholar 

  9. Arrighi, P., Di Molfetta, G., Marquez-Martin, I., Perez, A.: From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular quantum walks. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  10. Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quantum Inf. Process. 15(8), 3467–3486 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A Math. Theor. 47(46), 465302 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)

    ADS  Google Scholar 

  13. Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)

    ADS  Google Scholar 

  14. Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920 (1994)

    ADS  MathSciNet  Google Scholar 

  15. Bisio, A., D’Ariano, G.M., Perinotti, P.: Special relativity in a discrete quantum universe. Phys. Rev. A 94(4), 042120 (2016)

    ADS  MathSciNet  Google Scholar 

  16. Bisio, A., D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Solutions of a two-particle interacting quantum walk. Entropy 20(6), 435 (2018)

    ADS  MathSciNet  Google Scholar 

  17. Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244–264 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Carson, G.R., Loke, T., Wang, J.B.: Entanglement dynamics of two-particle quantum walks. Quantum Inf. Process. 14, 3193 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Quantum walks in external gauge fields. J. Math. Phys. 60, 012107 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chandrashekar, C.M., Banerjee, S., Srikanth, R.: Relationship between quantum walks and relativistic quantum mechanics. Phys. Rev. A 81(6), 062340 (2010)

    ADS  Google Scholar 

  21. Chandrashekar, C.M.: Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices. Sci. Rep. 3(1), 1–10 (2013)

    MathSciNet  Google Scholar 

  22. Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 88(4), 042301 (2013)

    ADS  Google Scholar 

  23. Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Phys. A Stat. Mech. Appl. 397, 157–168 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Douglas, B.L., Wang, J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A Math. Theor. 41, 075303 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill Book Company, New York (1965)

    MATH  Google Scholar 

  26. Fuda, T., Funakawa, D., Suzuki, A.: Localization of a multi-dimensional quantum walk with one defect. Quantum Inf. Process. 16(8), 203 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Hatifi, M., Di Molfetta, G., Debbasch, F., Brachet, M.: Quantum walk hydrodynamics. Sci. Rep. 9(1), 1–7 (2019)

    Google Scholar 

  28. Izaac, J.A., Wang, J.B.: Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions. Phys. Rev. E 96, 032136 (2017)

    ADS  Google Scholar 

  29. Izaac, J.A., Wang, J.B., Abbott, P.C., Ma, X.S.: Quantum centrality testing on directed graphs via PT-symmetric quantum walks. Phys. Rev. A 96, 032305 (2017)

    ADS  MathSciNet  Google Scholar 

  30. Jay, G., Debbasch, F., Wang, J.B.: Dirac quantum walks on triangular and honeycomb lattices. Phys. Rev. A 99(3), 032–113 (2019)

    MathSciNet  Google Scholar 

  31. Jordan, S.P., Wocjan, P.: Efficient quantum circuits for arbitrary sparse unitaries. Phys. Rev. A 80, 062301 (2009)

    ADS  MathSciNet  Google Scholar 

  32. Kumar, N.P., Balu, R., Laflamme, R., Chandrashekar, C.M.: Bounds on the dynamics of periodic quantum walks and emergence of the gapless and gapped Dirac equation. Phys. Rev. A 97(1), 012116 (2018)

    ADS  Google Scholar 

  33. Kurzyński, P.: Relativistic effects in quantum walks: Klein’s paradox and zitterbewegung. Phys. Lett. A 372(40), 6125–6129 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Loke, T., Tang, J.W., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum pageranks. Quantum Inf. Process. 16, 25 (2019)

    ADS  MATH  Google Scholar 

  35. Loke, T., Wang, J.B.: Efficient quantum circuits for szegedy quantum walks. Ann. Phys. 382, 64 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Weak limit theorem for a nonlinear quantum walk. Quantum Inf. Process. 17(9), 215 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Maeda, M., Suzuki, A.: Continuous limits of linear and nonlinear quantum walks. Rev. Math. Phys. 32(04), 2050008 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Mallick, A., Chandrashekar, C.M.: Dirac cellular automaton from split-step quantum walk. Sci. Rep. 6, 25779 (2016)

    ADS  Google Scholar 

  40. Mallick, A., Mandal, S., Karan, A., Chandrashekar, C.M.: Simulating Dirac hamiltonian in curved space-time by split-step quantum walk. J. Phys. Commun. 3(1), 015012 (2019)

    Google Scholar 

  41. Manouchehri, K., Wang, J.B.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)

    MATH  Google Scholar 

  42. Márquez-Martín, I., Arnault, P., Di Molfetta, G., Pérez, A.: Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks. Phys. Rev. A 98(3), 032333 (2018)

    ADS  Google Scholar 

  43. Marsh, S., Wang, J.B.: A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quantum Inf. Process. 18, 61 (2019)

    ADS  MATH  Google Scholar 

  44. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5—-6), 551–574 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Pérez, A.: Asymptotic properties of the Dirac quantum cellular automaton. Phys. Rev. A 93(1), 012328 (2016)

    ADS  Google Scholar 

  46. Qiang, X., Loke, T., Montanaro, A., Aungskunsiri, K., Zhou, X., O’Brien, J.L., Wang, J.B., Matthews, J.C.F.: Efficient quantum walk on a quantum processor. Nat. Commun. 7, 11511 (2016)

    ADS  Google Scholar 

  47. Schweber, S.S.: Feynman and the visualization of space-time processes. Rev. Mod. Phys. 58(2), 449 (1986)

    ADS  MathSciNet  Google Scholar 

  48. Sett, A., Pan, H., Falloon, P.E., Wang, J.B.: Zero transfer in continuous-time quantum walks. Quantum Inf. Process. 18, 159 (2019)

    ADS  MathSciNet  Google Scholar 

  49. Shikano, Y., Wada, T., Horikawa, J.: Nonlinear discrete-time quantum walk and anomalous diffusion. arXiv preprint arXiv:1303.3432, (2013)

  50. Singh, S., Balu, R., Laflamme, R., Chandrashekar, C.M.: Accelerated quantum walk, two-particle entanglement generation and localization. J. Phys. Commun. 3(5), 055008 (2019)

    Google Scholar 

  51. Strauch, F.W.: Relativistic effects and rigorous limits for discrete-and continuous-time quantum walks. J. Math. Phys. 48(8), 082102 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Strauch, F.W.: Connecting the discrete-and continuous-time quantum walks. Phys. Rev. A 74(3), 030301 (2006)

    ADS  MathSciNet  Google Scholar 

  53. Szekeres, P.: A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  54. Zhang, W.-W., Goyal, S.K., Simon, C., Sanders, B.C.: Decomposition of split-step quantum walks for simulating majorana modes and edge states. Phys. Rev. A 95(5), 052351 (2017)

    ADS  Google Scholar 

  55. Zhou, S.S., Wang, J.B.: Efficient quantum circuits for dense circulant and circulant like operators. R. Soc. Open Sci. 4, 160906 (2017)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Jay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jay, G., Debbasch, F. & Wang, J. A systematic method to building Dirac quantum walks coupled to electromagnetic fields. Quantum Inf Process 19, 422 (2020). https://doi.org/10.1007/s11128-020-02933-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02933-w

Keywords

Navigation