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Parameterization of quantum walks on cycles

Shuji Kuriki∗, Md Sams Afif Nirjhor†, Hiromichi Ohno∗

Abstract

This study investigate the unitary equivalence classes of quantum walks on cycles.

We show that unitary equivalence classes of quantum walks on a cycle with N vertices

are parameterized by 2N real parameters. Moreover, the ranges of two of the parame-

ters are restricted, and the ranges depend on the parity of N .

1 Introduction

Quantum walks are analogous to classical random walks. They have been studied in various
fields, such as quantum information theory and quantum probability theory. A quantum
walk is defined by a pair (U, {Hx}x∈V ), in which V is a countable set, {Hx}x∈V is a family of
separable Hilbert spaces, and U is a unitary operator on H =

⊕

x∈V Hx [10]. In this paper,
we discuss quantum walks on a cycle, in which V = {1, 2, . . . , N} and Hx = C2. These have
been the subject of some previous studies [1, 2, 4, 5].

It is important to clarify when two quantum walks are unitarily equivalent in the sense
of [7, 10]. If two quantum walks are unitarily equivalent, many properties of their quantum
walks are the same. For example, digraphs, dimensions of Hilbert spaces, spectrums of
unitary operators, probability distributions of quantum walks, etc. would be the same for
each quantum walk. The aim of this paper is to determine the unitary equivalence classes of
quantum walks on cycles. Then, we only need to study representatives of unitary equivalence
classes to know the above properties.

In the previous papers [7–9], we considered unitary equivalence classes of one-dimensional
and two-dimensional quantum walks. Unitary equivalence classes of translation-invariant
one-dimensional quantum walks were also investigated in [3].

In Sect. 2, we show a natural expression of quantum walks with some conditions. After
that, we consider unitary equivalence of such quantum walks. The results in Sect. 2 are
similar to those in [6, 7], but improved a little.

In Sect. 3, we prove that unitary equivalence classes of quantum walks on a cycle with
N vertices are parameterized by 2N real numbers. This parameterization is similar to
that of one-dimensional quantum walks, because we need two parameters for each vertex
to parameterize the unitary equivalence classes of one-dimensional quantum walks [8]. On
the other hand, ranges of two of the parameters are restricted, and the two parameters go
to zero when N goes to infinity. Moreover, the ranges depend on the parity of N . These
properties are not seen in the cases of one-dimensional and two-dimensional quantum walks.
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2 Natural expression of quantum walks

In this section, we present a natural expression of quantum walks with some conditions. We
also consider unitary equivalence of such quantum walks.

Let V be a countable set. For each x ∈ V , Hx = C
kx is a finite dimensional Hilbert space,

and Px is a projection from H =
⊕

y∈V Hy onto Hx. A unitary U on H is called a quantum
walk [7,10]. Given a quantum walk U on H, we can construct a multidigraph GU = (V,DU).
For vertices x, y ∈ V , the number of directed edges from y to x is denoted by card(x, y); i.e.,

card(x, y) = card{a ∈ DU : t(a) = x, o(a) = y},

where o(a) and t(a) are the origin and terminus of the directed edge a, respectively, and
card indicates the cardinal number of a set. We define the number of directed edges from y
to x by

card(x, y) = rankPxUPy.

Then, a multidigraph GU = (V,DU) is called a multidigraph of the quantum walk U . We
will write G = GU and D = DU , when there is no confusion.

We consider quantum walks which satisfy one of the following conditions: for all x ∈ V ,

card{a ∈ D : o(a) = x} = dimHx, (1)

card{a ∈ D : t(a) = x} = dimHx. (2)

We prepare two lemmas.

Lemma 2.1 If a quantum walk U satisfies (1), then for each x ∈ V , Ran(UPx) =
⊕

y∈V Ran(PyUPx).
Moreover, U |Hx

is a unitary from Hx onto
⊕

y∈V Ran(PyUPx).

Proof. For any UPxψ ∈ Ran(UPx),

UPxψ =
∑

y∈V

PyUPxψ ∈
⊕

y∈V

Ran(PyUPx).

Therefore, Ran(UPx) ⊂
⊕

y∈V Ran(PyUPx). This implies rankUPx ≤
∑

y∈V rankPyUPx.
By definitions and (1),

dimHx = dimUHx = rankUPx ≤
∑

y∈V

rankPyUPx =
∑

y∈V

card(y, x)

= card{a ∈ D : o(a) = x} = dimHx.

Hence, rankUPx =
∑

y∈V rankPyUPx and therefore,

dimRan(UPx) =
∑

y∈V

dimRan(PyUPx) = dim
⊕

y∈V

Ran(PyUPx).

Since Ran(UPx) ⊂
⊕

y∈V Ran(PyUPx), we obtain Ran(UPx) =
⊕

y∈V Ran(PyUPx).
By the equation UHx = Ran(UPx) =

⊕

y∈V Ran(PyUPx), U |Hx
is a unitary from Hx

onto
⊕

y∈V Ran(PyUPx) �

Lemma 2.2 If a quantum walk U satisfies (2), then U∗ satisfies (1).
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Proof. By the equation rankPxUPy = rankPyU
∗Px and (2),

dimHx = card{a ∈ DU : t(a) = x} =
∑

y∈V

card(x, y) =
∑

y∈V

rankPxUPy

=
∑

y∈V

rankPyU
∗Px = card{a ∈ DU∗ : o(a) = x}.

Hence, U∗ satisfies (1). �

The next theorem shows a natural expression of a quantum walk with the condition (1)
or (2). This result is similar to that in [6, 7], but improved a little.

Theorem 2.3 If a quantum walk U satisfies (1) or (2), there exist orthonormal bases

{ξa}a∈D and {ζa}a∈D of the Hilbert space H with ξa ∈ Ht(a) and ζa ∈ Ho(a) such that

U =
∑

a∈D

|ξa〉〈ζa|.

Proof. First, we assume that U satisfies (1). Since dimRan(PyUPx) = rankPyUPx =
card(y, x) for all x, y ∈ V , an orthonormal basis of Ran(PyUPx) is indexed by directed edges
{a : a ∈ D, t(a) = y, o(a) = x}. Hence, there is an orthonormal basis {ξa : a ∈ D, t(a) =
y, o(a) = x} of Ran(PyUPx). Note that ξa ∈ Hy = Ht(a). Then, the union

⋃

y∈V

{ξa : a ∈ D, t(a) = y, o(a) = x} = {ξa : a ∈ D, o(a) = x}

is an orthonormal basis of
⊕

y∈V Ran(PyUPx). Define ζa = U∗ξa. By Lemma 2.1, {ζa : a ∈
D, o(a) = x} is an orthonormal basis of Hx = Ho(a). Then, the union

⋃

x∈V

{ζa : a ∈ D, o(a) = x} = {ζa : a ∈ D}

is an orthonormal basis of H. Since U is unitary and ξa = Uζa, {ξa : a ∈ D} is also an
orthonormal basis of H. Consequently, we have orthonormal bases {ξa}a∈D and {ζa}a∈D of
the Hilbert space H with ξa ∈ Ht(a) and ζa ∈ Ho(a) such that

U =
∑

a∈D

|ξa〉〈ζa|.

Next, we assume that U satisfies (2). By Lemma 2.2, U∗ satisfies (1). Therefore, there
exist orthonormal bases {ζa}a∈DU∗

and {ξa}a∈DU∗
of the Hilbert space H with ζa ∈ Ht(a) and

ξa ∈ Ho(a) such that

U∗ =
∑

a∈DU∗

|ζa〉〈ξa|.

The equation rankPxUPy = rankPyU
∗Px implies DU∗ = {ā : a ∈ DU}, where ā is the inverse

edge of a. This allows us to change the index set from DU∗ to DU , that is,

U∗ =
∑

a∈DU

|ζa〉〈ξa|

3



with ξa ∈ Ht(a) and ζa ∈ Ho(a). Consequently, we have

U =
∑

a∈DU

|ξa〉〈ζa|,

where {ξa}a∈DU
and {ζa}a∈DU

are orthonormal bases of H with ξa ∈ Ht(a) and ζa ∈ Ho(a).
�

As a corollary of this theorem, we have the following.

Corollary 2.4 For a quantum walk U , the conditions (1) and (2) are equivalent.

Proof. Assume that U satisfies (1). By Theorem 2.3, there exist orthonormal bases {ξa}a∈D
and {ζa}a∈D of the Hilbert space H with ξa ∈ Ht(a) and ζa ∈ Ho(a) such that

U =
∑

a∈D

|ξa〉〈ζa|.

Since {ξa}a∈D is an orthonormal basis of H and ξa is in Ht(a), for each x ∈ V , the set

{ξa : a ∈ D, t(a) = x}

is an orthonormal basis Hx. Therefore, U satisfies (2).
On the other hand, assume that U satisfies (2). By Lemma 2.2, U∗ satisfies (1) and

therefore, U∗ satisfies (2). Again, by Lemma 2.2, U satisfies (1). �

Now, we consider unitary equivalence of quantum walks. We recall the definition of
unitary equivalence of quantum walks.

Definition 2.5 Quantum walks U1 and U2 on H =
⊕

x∈V Hx are unitarily equivalent if

there exists a unitary W =
⊕

x∈V Wx on H such that

WU1W
∗ = U2.

In a natural expression in Theorem 2.3, we need two orthonormal bases {ξa} and {ζa}.
Considering unitary equivalence of quantum walks with the conditions (1) and (2), we can
disappear one of them. {exi }kxi=1 denotes a canonical basis of Hx = Ckx .

Theorem 2.6 If U satisfies (1) or (2), there exists an orthonormal basis {ζxi : i = 1, . . . , kx, x ∈
V } of H such that U is unitarily equivalent to

Uζ =
∑

x∈V

kx
∑

i=1

|exi 〉〈ζxi |,

and ζxi is in Hy for some y which satisfies (x, y) ∈ D.

Proof. By Theorem 2.3, there exist orthonormal bases {ξa}a∈D and {ζa}a∈D of H with
ξa ∈ Ht(a) and ζa ∈ Ho(a) such that

U =
∑

a∈D

|ξa〉〈ζa|.
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Since card{a ∈ D : t(a) = x} = dimHx = kx, we can write

{ξa : a ∈ D, t(a) = x} = {ξxi }kxi=1 and {ζa : a ∈ D, t(a) = x} = {ηxi }kxi=1.

Note that {ξxi }kxi=1 is an orthonormal basis of Hx. Then, U can be written as

U =
∑

x∈V

kx
∑

i=1

|ξxi 〉〈ηxi |.

Define a unitary W by

W =
⊕

x∈V

kx
∑

i=1

|exi 〉〈ξxi |. (3)

Then,

WUW ∗ =
∑

x∈V

kx
∑

i=1

|Wξxi 〉〈Wηxi | =
∑

x∈V

kx
∑

i=1

|exi 〉〈ζxi |,

where ζxi = Wηxi . By definition, ζxi is in Hy for some y which satisfies (x, y) ∈ D. �

3 Unitary equivalence classes of quantum walks on cy-

cles

In this section, we consider unitary equivalence classes of quantum walks on cycles. The
vertex set is V = {1, 2, . . . , N} (N ≥ 3). For each x ∈ V , Hx = C

2. We defineH =
⊕N

x=1Hx.
Px is a projection from H onto Hx, and {ex1, ex2} is a canonical basis of Hx = C2.

Definition 3.1 A unitary U on H is called a quantum walk on a cycle if

rankPyUPx =

{

1 y = x± 1

0 otherwise

for all x ∈ V , where we define N + 1 = 1 and 0 = N with respect to x± 1.

By definition, a quantum walk U on a cycle satisfies (1). Hence, by Theorem 2.6, there
exists an orthonormal basis {ζx1 , ζx2 }x∈V of H such that U is unitarily equivalent to

Uζ =
∑

x∈V

(|ex1〉〈ζx1 |+ |ex2〉〈ζx2 |) .

Here, ζxi is in Hy for some y which satisfies (x, y) ∈ D. For any x ∈ V , (x, y) is in D if and
only if y = x±1 by definition. Therefore, ζxi is in Hx+1 or Hx−1. We assume that ζx1 ∈ Hx−1

and ζx2 ∈ Hx+1 without loss of generality. We set ζx+1
1 = ηx1 and ζx−1

2 = ηx2 . Then, {ηx1 , ηx2}
is an orthonormal basis of Hx, and

Uζ =
∑

x∈V

(

|ex1〉〈ηx−1
1 |+ |ex2〉〈ηx+1

2 |
)

=
∑

x∈V

(

|ex+1
1 〉〈ηx1 |+ |ex−1

2 〉〈ηx2 |
)

. (4)

Since {ηx1 , ηx2} is an orthonormal basis of Hx, we can write

ηx1 = rxe
iaxex1 +

√

1− r2xe
ibxex2 , ηx2 =

√

1− r2xe
icxex1 + rxe

idxex2
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for some 0 ≤ rx ≤ 1 and ax, bx, cx, dx ∈ R with ax − cx = bx − dx + π (mod 2π), where
i =

√
−1. We will use sx =

√

1− r2x for short, and omit (mod 2π) if there is no confusion.
We prepare three lemmas to get the unitary equivalence classes of quantum walks on

cycles.

Lemma 3.2 The set 4π
N
Z is equal to the following set in modulo 2π:

{

4πm

N
: 0 ≤ m ≤ N

2
− 1

}

(when N is even),

{

2πm

N
: 0 ≤ m ≤ N − 1

}

(when N is odd).

Proof. When N is even,

4π

N
Z =

2π

N/2
Z =

{

2πm

N/2
: 0 ≤ m ≤ N

2
− 1

}

=

{

4πm

N
: 0 ≤ m ≤ N

2
− 1

}

in modulo 2π.
When N is odd,

4π

N
· N + 1

2
=

2π

N
(mod 2π).

This implies
4π

N
Z =

2π

N
Z =

{

2πm

N
: 0 ≤ m ≤ N − 1

}

in modulo 2π. �

Lemma 3.3 For any β, γ, δ ∈ R, there exist real numbers α and l which satisfy Nα = β
(mod 2π), Nl = γ (mod 2π), 0 ≤ δ + α+ 2l < 2π

N
in modulo 2π and

0 ≤ α <
4π

N
(when N is even), 0 ≤ α <

2π

N
(when N is odd).

Proof. For the conditions Nα = β and Nl = γ, α and l should be

α =
β

N
+

2πm1

N
, l =

γ

N
+

2πm2

N

for some m1, m2 ∈ Z. Here,

δ + α + 2l = δ +
β + 2γ

N
+

2πm1

N
+

4πm2

N
.

When N is odd, there exists m1 ∈ Z such that

0 ≤ β

N
+

2πm1

N
<

2π

N
.

Moreover, by the previous lemma, there exists m2 ∈ Z such that

0 ≤ δ +
β + 2γ

N
+

2πm1

N
+

4πm2

N
<

2π

N

in modulo 2π.
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When N is even, there exists m3 ∈ Z such that

0 ≤ β

N
+

2πm3

N
<

2π

N
≤ β

N
+

2π(m3 + 1)

N
<

4π

N
.

Moreover, by the previous lemma, there exists m2 ∈ Z such that

−2π

N
≤ δ +

β + 2γ

N
+

2πm3

N
+

4πm2

N
=: t <

2π

N

in modulo 2π. If −2π
N

≤ t < 0, we set m1 = m3 + 1. If 0 ≤ t < 2π
N
, we set m1 = m3. Then,

we obtain the assertion. �

Lemma 3.4 Let l be a real number which satisfies lN = 0 (mod 2π). When N is even,

2l =
4πm

N

for some m ∈ {0, 1, . . . , N/2− 1} in modulo 2π. When N is odd,

2l =
2πm

N

for some m ∈ {0, 1, . . .N − 1} in modulo 2π.

Proof. By the assumption, l ∈ 2π
N
Z. Hence, 2l ∈ 4π

N
Z. Then, we have the assertion by

Lemma 3.2. �

In quantum mechanics, a state ψ in a Hilbert space is identified with eilψ. Moreover,
almost all properties of eilU , such as the spectrum and the distribution for an initial state,
can be obtained from those of U . Thus, we also identify a quantum walk U with eilU .

Theorem 3.5 A quantum walk U on a cycle is unitarily equivalent to

Ur,θ,α =
∑

x∈V

(

|ex+1
1 〉〈rxex1 + sxe

iθxex2 |+ |ex−1
2 〉〈−sxei(−θx+α)ex1 + rxe

iαex2 |
)

(5)

for some 0 ≤ rx ≤ 1, sx =
√

1− r2x, θ1 = 0, 0 ≤ θ2 <
2π
N
, 0 ≤ θx < 2π (x = 3, 4, . . .N) and

0 ≤ α <
4π

N
(when N is even), 0 ≤ α <

2π

N
(when N is odd).

Proof. We already show that U is unitarily equivalent to

Uζ =
∑

x∈V

(

|ex+1
1 〉〈rxeiaxex1 + sxe

ibxex2 |+ |ex−1
2 〉〈sxeicxex1 + rxe

idxex2 |
)

.

Let α be a real number which satisfies

Nα =
N
∑

k=1

dk −
N
∑

k=1

ak (mod 2π), (6)
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and let l be a real number which satisfies

Nl =

N
∑

k=1

ak (mod 2π). (7)

Define a unitary Wx on Hx by

Wx =

[

eipx 0
0 eiqx

]

= eipx|ex1〉〈ex1|+ eiqx|ex2〉〈ex2 |,

where

p1 = 0, px =
x−1
∑

k=1

ak − (x− 1)l (2 ≤ x ≤ N),

q1 = a1 − b1, qx = −
x

∑

k=2

dk + (x− 1)(α + l) + a1 − b1 (2 ≤ x ≤ N).

Then, W =
⊕

x∈V Wx is a unitary on H =
⊕

Hx. By simple calculation,

eilWUζW
∗ =eil

∑

x∈V

(

|Wex+1
1 〉〈rxeiaxWex1 + sxe

ibxWex2 |+ |Wex−1
2 〉〈sxeicxWex1 + rxe

idxWex2 |
)

=
∑

x∈V

(

|ex+1
1 〉〈rxei(ax+px−px+1−l)ex1 + sxe

i(bx+qx−px+1−l)ex2 |

+|ex−1
2 〉〈sxei(cx+px−qx−1−l)ex1 + rxe

i(dx+qx−qx−1−l)ex2 |
)

. (8)

By paying attention to the cases x = 1 and x = N , we have

ax + px − px+1 − l = 0 (1 ≤ x ≤ N),

dx + qx − qx−1 − l = α (1 ≤ x ≤ N).

We set θx = bx + qx − px+1 − l. Then, θ1 = 0 and

θx = −
x

∑

k=2

ak −
x

∑

k=2

dk + bx − b1 + (x− 1)(α+ 2l) (2 ≤ x ≤ N). (9)

In particular, θ2 = −a2 − d2 + b2 − b1 + α + 2l. By lemma 3.3, there exist real numbers α
and l such that Nα =

∑N

k=1 dk −
∑N

k=1 ak, Nl =
∑N

k=1 ak,

0 ≤ −a2 − d2 + b2 − b1 + α + 2l <
2π

N

in modulo 2π and

0 ≤ α <
4π

N
(when N is even), 0 ≤ α <

2π

N
(when N is odd).

Since the vectors

rxe
i(ax+px−px+1−l)ex1 + sxe

i(bx+qx−px+1−l)ex2 and sxe
i(cx+px−qx−1−l)ex1 + rxe

i(dx+qx−qx−1−l)ex2

in (8) make an orthonormal basis of Hx,

cx + px − qx−1 − l = −θx + α + π.
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Consequently,

eilWUζW
∗ =

∑

x∈V

(

|ex+1
1 〉〈rxex1 + sxe

iθxex2 |+ |ex−1
2 〉〈−sxei(−θx+α)ex1 + rxe

iαex2 |
)

= Ur,θ,α.

Therefore, we conclude that a quantum walk U is unitary equivalent to Ur,θ,α for some
0 ≤ rx ≤ 1, θ1 = 0, 0 ≤ θ2 <

2π
N
, 0 ≤ θx < 2π (x = 3, 4, . . .N) and

0 ≤ α <
4π

N
(when N is even), 0 ≤ α <

2π

N
(when N is odd).

�

Theorem 3.6 Quantum walks Ur,θ,α and Ur′,θ′,α′ with 0 < rx, r
′
x < 1, θ1 = θ′1 = 0, 0 ≤

θ2, θ
′
2 <

2π
N
, 0 ≤ θx, θ

′
x < 2π (x = 3, 4, . . .N) and

0 ≤ α, α′ <
4π

N
(when N is even), 0 ≤ α, α′ <

2π

N
(when N is odd)

are unitarily equivalent if and only if, for all 1 ≤ x ≤ N ,

rx = r′x, θx = θ′x and α = α′. (10)

Proof. If (10) holds, then Ur,θ,α = Ur′,θ′,α′ . Therefore, Ur,θ,α and Ur′,θ′,α′ are unitarily
equivalent.

Conversely, we assume that Ur,θ,α and Ur′,θ′,α′ are unitarily equivalent, that is, there exist
a unitary W =

⊕

x∈V Wx on H and a real number l such that

eilWUr,θ,αW
∗ = Ur′,θ′,α′ .

First, we consider the equation

Px±1e
ilWUr,θ,αW

∗Px = Px±1Ur′,θ′,α′Px.

By (5),
Px+1e

ilWUr,θ,αW
∗Px = eil|Wex+1

1 〉〈W (rxe
x
1 + sxe

iθxex2)|
and

Px+1Ur′,θ′,α′Px = |ex+1
1 〉〈r′xex1 + s′xe

iθ′xex2 |.
Therefore, Ran(Px+1e

ilWUr,θ,αW
∗Px) = CWex+1

1 and Ran(Px+1Ur′,θ′,α′Px) = Cex+1
1 , so that

Wex+1
1 ∈ Cex+1

1 . Similarly, the equations

Px−1e
ilWUr,θ,αW

∗Px = eil|Wex−1
2 〉〈W (−sxei(−θx+α)ex1 + rxe

iαex2)|
Px−1Ur′,θ′,α′Px = |ex−1

2 〉〈−s′xei(−θ′x+α′)ex1 + r′xe
iα′

ex2 |

imply Wex−1
2 ∈ Cex−1

2 . Since W =
⊕

x∈V Wx is unitary, Wx can be written as

Wx =

[

eipx 0
0 eiqx

]

= eipx|ex1〉〈ex1 |+ eiqx|ex2〉〈ex2|

for some px, qx ∈ R.
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Now, we consider the equation eilWUr,θ,αW
∗ = Ur′,θ′,α′ . Because (eitW )Ur,θ,α(e

itW )∗ =
WUr,θ,αW

∗ for any t ∈ R, we can assume that p1 = 0. By simple calculation, we have

eilWUr,θ,αW
∗

= eil
∑

x∈V

(

|Wex+1
1 〉〈rxWex1 + sxe

iθxWex2 |+ |Wex−1
2 〉〈−sxei(−θx+α)Wex1 + rxe

iαWex2|
)

=
∑

x∈V

(

|ex+1
1 〉〈rxei(px−px+1−l)ex1 + sxe

i(θx+qx−px+1−l)ex2 |

+|ex−1
2 〉〈−sxei(−θx+α+px−qx−1−l)ex1 + rxe

i(α+qx−qx−1−l)ex2 |
)

.

On the other hand,

Ur′,θ′,α′ =
∑

x∈V

(

|ex+1
1 〉〈r′xex1 + s′xe

iθ′xex2 |+ |ex−1
2 〉〈−s′xei(−θ′x+α′)ex1 + rxe

iα′

ex2 |
)

.

Therefore, we get rx = r′x and the equations

px − px+1 − l = 0, θx + qx − px+1 − l = θ′x
−θx + α+ px − qx−1 − l = −θ′x + α′, α + qx − qx−1 − l = α′

in modulo 2π. By p1 = 0 and the first equation,

px = −l(x− 1) (1 ≤ x ≤ N).

Moreover, pN − p0 − l = 0 implies lN = 0. By the second equation with x = 1, we have
q1 = 0, because θ1 = θ′1 = 0. Then, by the fourth equation,

qx = (l − α + α′)(x− 1) (1 ≤ x ≤ N).

Furthermore, α+q1−qN−l = α′ implies (l−α+α′)N = 0. The second equation is calculated
as

θx + (2l − α + α′)(x− 1) = θ′x (1 ≤ x ≤ N). (11)

In particular,
θ2 + 2l − α + α′ = θ′2. (12)

Since lN = 0 and (l − α + α′)N = 0,

(θ2 − θ′2)N = 0.

By the assumption 0 ≤ θ2, θ
′
2 <

2π
N
, we obtain θ2 = θ′2. Then, (12) is

2l − α + α′ = 0.

Here, α and α′ satisfy

−4π

N
< α− α′ <

4π

N
(when N is even), −2π

N
< α− α′ <

2π

N
(when N is odd).

Therefore, we obtain α− α′ = 2l = 0 by Lemma 3.4, and hence, α = α′. Moreover, by (11),
θx = θ′x for all 1 ≤ x ≤ N . Consequently, we conclude α = α′, rx = r′x and θx = θ′x for all
1 ≤ x ≤ N . �
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Theorem 3.5 and 3.6 say that the unitary equivalence classes of quantum walks on a cycle
are parametrized by α, rx and θx. As N goes to infinity, the limits of α and θ2 are 0. On the
other hand, a one-dimensional quantum walk is unitarily equivalent to

∑

x∈Z

(

|ex+1
1 〉〈rxex1 + eiθxsxe

x
2 |+ |ex−1

2 〉〈−e−iθxsxe
x
1 + rxe

x
2 |
)

where 0 ≤ rx ≤ 1, θ0 = θ1 = 0 and 0 ≤ θx < 2π (x 6= 0, 1). Therefore, the parametrization
of the unitary equivalence classes of one-dimensional quantum walks is similar to that of
quantum walks on a cycle with N → ∞.

There is a natural shift operator S on H, that is,

Sexi = ex+1
i

for i = 1, 2 and x ∈ V . A quantum walk U on a cycle is called translation-invariant if

SUS∗ = U.

By the next theorem, unitary equivalence classes of translation-invariant quantum walk on
a cycle are parametrized by two real numbers.

Corollary 3.7 A translation-invariant quantum walk on a cycle is unitarily equivalent to

Ur,α =
∑

x∈V

(

|ex+1
1 〉〈rex1 + sex2|+ |ex−1

2 〉〈−seiαex1 + reiαex2 |
)

for some 0 ≤ r ≤ 1, s =
√
1− r2 and

0 ≤ α <
4π

N
(when N is even), 0 ≤ α <

2π

N
(when N is odd).

Moreover, Ur,α and Ur′,α′ with r, r′ 6= 0, 1 are unitarily equivalent if and only if r = r′ and
α = α′.

Proof. We need to consider Theorem 2.3 and 2.6, again. By Theorem 2.3, U can be written
as

U =
∑

x∈V

2
∑

i=1

|ξxi 〉〈ζxi |.

Since U is translation-invariant, there exist ξi and ζi (i = 1, 2) in C2 such that ξxi = ξi and
ζxi = ζi for all x ∈ V . Hence, the unitary W in (3) is described as

W =
⊕

x∈V

2
∑

i=1

|exi 〉〈ξxi |

and is translation-invariant. Therefore, Uζ = WUW ∗ in Theorem 2.6 is also translation-
invariant and is written as

Uζ =
∑

x∈V

(

|ex+1
1 〉〈ηx1 |+ |ex−1

2 〉〈ηx2 |
)

,

11



where ηx1 = η1 and ηx2 = η2 for some η1, η2 ∈ C2, as we see in (4). This implies that there
exist 0 ≤ r ≤ 1 and a, b, c, d ∈ R such that, for all x ∈ V , rx = r, ax = a and so on. Then,
θx in (9) is

θx = (x− 1)(−a− d+ α + 2l) = (x− 1)θ2.

By (6) and (7), Nθ2 = 0 (mod 2π). Since 0 ≤ θ2 < 2π
N
, θ2 = 0, and hence, θx = 0

(1 ≤ x ≤ N). Consequently, Uζ is unitarily equivalent to Ur,α.
The remaining assertion follows from Theorem 3.6, immediately. �
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