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Parameterization of quantum walks on cycles

Shuji Kuriki* Md Sams Afif Nirjhor! Hiromichi Ohno*

Abstract

This study investigate the unitary equivalence classes of quantum walks on cycles.
We show that unitary equivalence classes of quantum walks on a cycle with N vertices
are parameterized by 2N real parameters. Moreover, the ranges of two of the parame-
ters are restricted, and the ranges depend on the parity of V.

1 Introduction

Quantum walks are analogous to classical random walks. They have been studied in various
fields, such as quantum information theory and quantum probability theory. A quantum
walk is defined by a pair (U, { H;},ev), in which V' is a countable set, { H, },cy is a family of
separable Hilbert spaces, and U is a unitary operator on H = €, ., H, [10]. In this paper,
we discuss quantum walks on a cycle, in which V' = {1,2,..., N} and H, = C?. These have
been the subject of some previous studies [11,24,5].

It is important to clarify when two quantum walks are unitarily equivalent in the sense
of [710]. If two quantum walks are unitarily equivalent, many properties of their quantum
walks are the same. For example, digraphs, dimensions of Hilbert spaces, spectrums of
unitary operators, probability distributions of quantum walks, etc. would be the same for
each quantum walk. The aim of this paper is to determine the unitary equivalence classes of
quantum walks on cycles. Then, we only need to study representatives of unitary equivalence
classes to know the above properties.

In the previous papers [7H9], we considered unitary equivalence classes of one-dimensional
and two-dimensional quantum walks. Unitary equivalence classes of translation-invariant
one-dimensional quantum walks were also investigated in [3].

In Sect. 2, we show a natural expression of quantum walks with some conditions. After
that, we consider unitary equivalence of such quantum walks. The results in Sect. 2 are
similar to those in [6,[7], but improved a little.

In Sect. 3, we prove that unitary equivalence classes of quantum walks on a cycle with
N vertices are parameterized by 2N real numbers. This parameterization is similar to
that of one-dimensional quantum walks, because we need two parameters for each vertex
to parameterize the unitary equivalence classes of one-dimensional quantum walks [8]. On
the other hand, ranges of two of the parameters are restricted, and the two parameters go
to zero when N goes to infinity. Moreover, the ranges depend on the parity of N. These
properties are not seen in the cases of one-dimensional and two-dimensional quantum walks.
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2 Natural expression of quantum walks

In this section, we present a natural expression of quantum walks with some conditions. We
also consider unitary equivalence of such quantum walks.

Let V be a countable set. For each x € V, H, = CF= is a finite dimensional Hilbert space,
and P, is a projection from H = @yev H, onto H,. A unitary U on H is called a quantum
walk [7)10]. Given a quantum walk U on H, we can construct a multidigraph Gy = (V, Dy).
For vertices x,y € V, the number of directed edges from y to x is denoted by card(z, y); i.e.,

card(z,y) = card{a € Dy : t(a) = z,0(a) = y},

where o(a) and t(a) are the origin and terminus of the directed edge a, respectively, and
card indicates the cardinal number of a set. We define the number of directed edges from y
to x by

card(z,y) = rank P, UP,.

Then, a multidigraph Gy = (V, Dy) is called a multidigraph of the quantum walk U. We
will write G = Gy and D = Dy, when there is no confusion.
We consider quantum walks which satisfy one of the following conditions: for all x € V,

card{a € D: o(a) = z} = dim H,, (1)
card{a € D: t(a) = 2} = dim H,. (2)

We prepare two lemmas.

Lemma 2.1 If a quantum walk U satisfies ([II), then for eachx € V, Ran(UP,) = P
Moreover, Uly, is a unitary from H, onto @, Ran(P,UP,).

Ran(P,UP,).

yeVv
yev

Proof. For any UP,1 € Ran(UP,),
UPyp =Y P,UP € @PRan(P,UP,).
yev yev
Therefore, Ran(UP;) C @,y Ran(P,UP,). This implies rankUP, < , rank P, UP;.
By definitions and (),

dimH, = dimUH, = rankUP, < ZrankuUng = Z card(y, )
yev yev
= card{a € D: o(a) =z} = dim H,.

Hence, rankU P, = Eer rank P, U P, and therefore,

dimRan(UP,) = Y _dim Ran(P,UP,) = dim @ Ran(P,UP,).

yeVv yev

Since Ran(UP;) C @,y Ran(P,UP;), we obtain Ran(UP;) = D,y Ran(P,UF;).
By the equation UH, = Ran(UP,) = @,y Ran(P,UP,), Uly, is a unitary from H,
onto P,y Ran(P,UP;) O

Lemma 2.2 If a quantum walk U satisfies [2l), then U* satisfies ().
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Proof. By the equation rankP,UP, = rankP,U*P, and (2)),

dimH, = card{a € Dy: t(a) =z} = Z card(z,y) = Z rank P, U P,

yev yev
= Z rankP,U* P, = card{a € Dy~: o(a) = z}.
yeVv
Hence, U* satisfies (). O

The next theorem shows a natural expression of a quantum walk with the condition ()
or (2). This result is similar to that in [6L[7], but improved a little.

Theorem 2.3 If a quantum walk U satisfies [dl) or (2), there exist orthonormal bases
{&a}aep and {Catacp of the Hilbert space H with §4 € Hy@ny and (o € Ho@) such that

U= Z |§a><§a|'

aeD

Proof. First, we assume that U satisfies (IJ). Since dim Ran(P,UP,) = rankP,UP, =

card(y, x) for all z,y € V, an orthonormal basis of Ran(P,UP,) is indexed by directed edges
{a:a € D,t(a) = y,o(a) = xz}. Hence, there is an orthonormal basis {{,: a € D,t(a) =
y,o(a) = x} of Ran(P,UP,). Note that & € H, = Hy). Then, the union

| J{:ae D t(a)=y,0(a) =1} = {&: a€ D,o(a) =z}

yev

is an orthonormal basis of @, ., Ran(P,UP;). Define (4 = U*§a. By Lemma 2.} {¢a: a €
D,o(a) = z} is an orthonormal basis of H, = Ho(). Then, the union

U{Ca: a€ D,ola)=x}={C:ac D}

zeV

is an orthonormal basis of H. Since U is unitary and & = UC(,, {&a: @ € D} is also an
orthonormal basis of H. Consequently, we have orthonormal bases {&a}acp and {(a}acp of
the Hilbert space H with §, € Hy@a) and (o € Hoa) such that

U= Z |§a><§a|'

aeD

Next, we assume that U satisfies (2)). By Lemma 2.2] U* satisfies (Il). Therefore, there
exist orthonormal bases {(a}acp,. and {&a}tacp,. of the Hilbert space H with (4 € Hy) and
£a € Ho(a) such that

Ur= Z Ka><£a‘

aEDU*

The equation rank P, U P, = rank P,U* P, implies Dy« = {a: a € Dy}, where a is the inverse
edge of a. This allows us to change the index set from Dy+ to Dy, that is,

Ur = Z |§a><§a|

acDy



with {a € Hya) and (4 € Hora). Consequently, we have

U= l&)Gl

acDy

where {&a}tacp, and {(a}acp, are orthonormal bases of H with {4 € Hywm) and (o € Ho(a)-
]

As a corollary of this theorem, we have the following.
Corollary 2.4 For a quantum walk U, the conditions () and ([2) are equivalent.

Proof. Assume that U satisfies (Il). By Theorem 23] there exist orthonormal bases {&a}acp
and {Ca}acp of the Hilbert space H with &, € Hy(a) and (4 € Ho(a) such that

U= Z |§a><§a|'

aeD

Since {&a}acp is an orthonormal basis of H and &, is in Hia), for each z € V, the set
{{a: a€ D,t(a) =z}

is an orthonormal basis H,. Therefore, U satisfies (2).
On the other hand, assume that U satisfies (2)). By Lemma 22 U* satisfies (Il) and
therefore, U* satisfies ([2]). Again, by Lemma 22 U satisfies (TI). O

Now, we consider unitary equivalence of quantum walks. We recall the definition of
unitary equivalence of quantum walks.

Definition 2.5 Quantum walks Uy and Uy on H = P
there exists a unitary W = @, Wo on H such that

sev Ha are unitarily equivalent if

zeV

WU1W* == UQ.

In a natural expression in Theorem 23] we need two orthonormal bases {£,} and {(,}.
Considering unitary equivalence of quantum walks with the conditions () and (), we can
disappear one of them. {e?}*, denotes a canonical basis of H, = Ck=.

Theorem 2.6 IfU satisfies ([II) or @), there exists an orthonormal basis {¢F:i=1,... ky,x €
V'} of H such that U is unitarily equivalent to

ke
Ue=>_) len) (],
xeV i=1

and 7 is in H, for some y which satisfies (x,y) € D.

Proof. By Theorem 2.3 there exist orthonormal bases {&a}acp and {Catacp of H with
§a € Hia) and Ca € Hy(a) such that

U= Z |§a><§a|'

aeD
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Since card{a € D: t(a) = z} = dim H, = k,, we can write
{Garae Dit(a) =a} = {1}, and {G:a€ D,t(a) =a} = {1}z,
Note that {£7}F is an orthonormal basis of H,. Then, U can be written as

=33 kel

zeV i=1

Define a unitary W by

=@ len) el 3)

eV i=1
Then,
ka kg
WOW* =3 > W Wil =3 > len)(¢l,
zeV i=1 zeV i=1
where (7 = Wn?. By definition, (7 is in ‘H, for some y which satisfies (z,y) € D. U

3 Unitary equivalence classes of quantum walks on cy-
cles

In this section, we consider unitary equivalence classes of quantum walks on cycles. The
vertex set is V = {1,2,..., N} (N > 3). Foreachz € V, H, = C?. We define H = EB;V:l H,.

P, is a projection from H onto H,, and {e},e3} is a canonical basis of H, = C2.
Definition 3.1 A unitary U on H is called a quantum walk on a cycle if

1 y=ao+1

rank P,UP, = )
0 otherwise

for all x € V', where we define N +1=1 and 0 = N with respect to v £+ 1.

By definition, a quantum walk U on a cycle satisfies (Il). Hence, by Theorem 2.6 there
exists an orthonormal basis {({, (3 }.ev of H such that U is unitarily equivalent to

Ue = (leD) (¢TI + [es)(G]) -

zeV

Here, ¢7 is in H, for some y which satisfies (z,y) € D. For any z € V, (z,y) is in D if and
only if y = x =1 by definition. Therefore, (7 is in H,11 or H,_1. We assume that (¥ € H,1
and (¥ € H,y1 without loss of generality. We set (™ = n? and (' = n§. Then, {n?,n3}

is an orthonormal basis of H,, and
Uo=Y_ (lef) (i +les)(ms ™) = > (lef")(nil +les ") (ns]) - (4)
eV eV
Since {n{,n5} is an orthonormal basis of H,, we can write

ey, 0y =+/1—r2=el + el

i ib
ny =ree%el + /1 —r2e’"



for some 0 < r, < 1 and a,,b,,c;,d, € R with a, — ¢, = b, — d, + © (mod 27), where
i=+/—1. We will use s, = /1 — 72 for short, and omit (mod 2) if there is no confusion.

We prepare three lemmas to get the unitary equivalence classes of quantum walks on
cycles.

Lemma 3.2 The set %Z is equal to the following set in modulo 2m:

0<m<

4d7m N
N 2

— 1} (when N is even),
2mm .
{T:OSmSN—l} (when N is odd).

Proof. When N is even,

47 27 2mm N 4d7m N
—7 = 7 0<m< ——1r,=4{——:0< < ——1
N7 T N2 { fsms3 } {N fsms 3 }

in modulo 27.

When N is odd,

This implies

in modulo 27. O

Lemma 3.3 For any 3,7,6 € R, there exist real numbers o and | which satisfy Naw =
(mod 27), Nl =+ (mod 27), 0 < 0 + a + 2l < 2 in modulo 27 and

4 2
0<a< Nﬁ (when N is even), 0<a< Nﬁ (when N is odd).

Proof. For the conditions Na =  and NI = ~, a and [ should be

B 2mmy | +27Tm2
CTNT N NN

for some mq, my € Z. Here,

54—2"}/ 27rm1 47rm2
N + N + N

When N is odd, there exists m; € Z such that

O+a+20=050+

6 2mmy 2w

< = .
Osy+t N <%

Moreover, by the previous lemma, there exists mq € Z such that

B+2y 2mmy  4mms 27

< _
0<6+ N N N<N

in modulo 27.



When N is even, there exists mg € Z such that

g 2mmsz 2w _ B 2m(mg+1) Ax
< =4 ——< —< =4 —= <K .
_]\f+ N ]\f_]\fJr N N

Moreover, by the previous lemma, there exists mq € Z such that

2T B+2y 2mm3  4drme 21
—— <94 =t < —
N — * N * N * N N

in modulo 27. If —%’T <t<O0,weset my=mz+1. If0<t< %’T, we set m; = ms. Then,
we obtain the assertion. O

Lemma 3.4 Let [ be a real number which satisfies IN =0 (mod 27). When N is even,

4dm
2l = ——
N

for some m € {0,1,...,N/2 — 1} in modulo 2w. When N is odd,

o] — 2mm
N

for some m € {0,1,...N — 1} in modulo 2.

Proof. By the assumption, [ € %’TZ. Hence, 2] € %Z. Then, we have the assertion by
Lemma 32 O

In quantum mechanics, a state ¢ in a Hilbert space is identified with es). Moreover,
almost all properties of e'U, such as the spectrum and the distribution for an initial state,
can be obtained from those of U. Thus, we also identify a quantum walk U with e'U.

Theorem 3.5 A quantum walk U on a cycle is unitarily equivalent to

Urbo = Z (leg™)(roef + speel| + es ) (—s,e "= Tef 4 1 c'%€|) (5)
zeV

for some 0 <r, <1, s, =+/1—12, 91:O,O§02<2W”,0§6’$<27T (x=3,4,...N) and

4 2
0<a< Nﬁ (when N is even), 0<a< Nﬁ (when N is odd).

Proof. We already show that U is unitarily equivalent to

Uc =3 (e {rac™ef + sac®ef] + |5 ') (saee] + raceg])

zeV

Let « be a real number which satisfies

N N
Na:de—Zak (mod 27), (6)
k=1 k=1



and let [ be a real number which satisfies
N
NIl =) a; (mod 2m). (7)
k=1

Define a unitary W, on H, by

eipz 0 Pz | AT T iz | AT T
W, = 0. | = €7 le7){ef] + e |eg){es],

0 e
where
z—1
p1 =0, pmzzak_<x_1)l (2<z < N),
k=1
¢ = a; — by, Qx:—zdk+($—1)(04+l)+a1—bl (2<xz <N).
k=2
Then, W = @, ., W, is a unitary on H = @ H,. By simple calculation,

WU =Y~ (|[Wef ) (roe ™ Wel + s, Wel| + [Wel ') (s, Wef + rpe'®Wej|)
zeV

— Z (‘ef‘f’l)<Txei(az+pz*px+1*l)ef _'_ Sxei(bz‘FQI*px_Flfl)eg‘
zcV
+|e;‘—1><Sxei(0x+px_(h—1—l)eil + Txei(dx+qx_q171_l)e§|) . (8)

By paying attention to the cases x = 1 and x = N, we have

Ay + P —per1 —1=0 (1 <z <N),
dx+£]$_qx—1_l:a (1§5L'SN)

We set 0, = b, + ¢ — pz+1 — (. Then, 6; =0 and

O == ar— Y dp+b,—b+(x—1)(a+2) 2<z<N). (9)
k=2 k=2

In particular, 0y = —ay — dy + by — by + a + 2[. By lemma [B.3] there exist real numbers «
and [ such that Noo = SO0 dj, — SO ag, NI =S | ag,

2m
0< —ag—d2+b2—b1+a+2l< N
in modulo 27 and
A , 27 :
0<a< N (when N is even), 0<a< N (when N is odd).
Since the vectors
rxei(“”‘+p”_p“1_l)ef + sxei(b”‘+q”_pz+1_l)e§ and Sxei(cx‘f‘px_‘hfl_l)e? +rxei(dx+qx—qz—1—l)e§
in (8) make an orthonormal basis of H,,

C:v_'_pm_qul_l:_e:v—i_a_'_ﬂ--
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Consequently,
eilWUCW* = Z (\em“}(rmef + s.e%el| + |es™ 1><—sxei(’9”+a)e1 + rxelae§|) =U,pa-
zeV

Therefore, we conclude that a quantum walk U is unitary equivalent to U, g, for some
0<r,<1,6,=0, 0<92< ,0<0, <27 (r=3,4,...N) and

4
0<ax< Wﬂ (when N is even), 0<ac< N (when N is odd).

U

Theorem 3.6 Quantum walks U,g, and Uy g o with 0 < ry,rl < 1,60, =0 =0, 0 <
05,0, < 22,0<0,,0, <27 (x=3,4,...N) and

0<a,d < % (when N is even), 0<a,d < QWW (when N is odd)

are unitarily equivalent if and only if, for all1 <z < N,

re=1, 0,=0, and a=«d. (10)

€

Proof. If (I0) holds, then U, g, = Uy g . Therefore, U, g, and Uy g o are unitarily
equivalent.
Conversely, we assume that U, g, and U, ¢ o+ are unitarily equivalent, that is, there exist

a unitary W = &, ., W, on H and a real number [ such that

WU, 0 W* =Up g o
First, we consider the equation

il *
Pm:l:le WUT,@,QW Pm = Pm:l:lUr/,G’,a/Pm-

By (@), .
P18 WU, g JW*P, = ' |[Wef ) (W (r,ef + s,el%ef)|

and
PoiUpg o Py = |e’“+1)(r e + s elezez\

Therefore, Ran(P,1'WU, 4 JW*P,) = CWe{™ and Ran(P,; Uy g o P) = Ce{ ™| so that
Welt! ¢ (Cem+1 Similarly, the equations
Py 1" WU, g W*P, = ' |{Wej~ 1><W(—sxei(7€z+a)e1 + rpe'%ed))|

PorUp o Py = &™) (=l Pt 4yt o g

imply Wei ! € Ces™'. Since W =@, .., W, is unitary, W, can be written as

zeV

eipz 0 iPg | 4T T iz | AT x
W, = 0 et = e |e])(e]| + €7 |e}) (e

for some p,, ¢, € R.



Now, we consider the equation e'WU, g ,W* = U, g o. Because (W)U, g (e'W)* =
WU, ,W* for any t € R, we can assume that p; = 0. By simple calculation, we have

WU, g JIW*
7,0,
il 1 10 1 i(—04 i
=" " ([Wei™) (r,Wef + s,e™Wej| + [Wej ') (—s,e T Wef + re®Wej|)
zeV
_2 : |eaz+1 7‘ e i(pe—Pot1— l)e + s, e(9x+q:c_pz+1 l)ex|
zeV

On the other hand,

Upirer = 3 (165t + st | + e ) (—sle %o + rpeeg]).
eV
Therefore, we get r, = /. and the equations
Pz — Pz+1 —l:O, 9x+qg: — Pz+1 —l= 9;113
_0x+a+px_Qm—1_l:_0;+a/a a+Qm_Qx—1_l:a/
in modulo 27. By p; = 0 and the first equation,

Moreover, py — pg — [ = 0 implies [N = 0. By the second equation with x = 1, we have
¢1 = 0, because 0; = 67 = 0. Then, by the fourth equation,

=(l—a+ad)(z—1) (1<z<N).

Furthermore, a+¢; —qy —1 = o implies (I—a+a')N = 0. The second equation is calculated

" .+ (2l —a+d)(z—1) =6, (1<z<N). (11)

In particular,
O + 2 —a+a' =0, (12)

Since [N =0 and (I —a+ )N =0,

(6 —05,)N = 0.
By the assumption 0 < 6y, 60, < <%, we obtain 0 = 6,. Then, (I2) is
20— a+a =0.
Here, a and o/ satisfy
47 47 2m 27

—W<oz—0z <y (when N is even), —W<oz—0z <y (when N is odd).

Therefore, we obtain v — o/ = 21 = 0 by Lemma [B.4] and hence, o = o/. Moreover, by (L),
0, =0, for all 1 <2 < N. Consequently, we conclude a = o, 1, = 7}, and 0, = ¢/ for all
1<z <N. O

10



Theorem and say that the unitary equivalence classes of quantum walks on a cycle
are parametrized by o, r, and 0,. As N goes to infinity, the limits of a and 5 are 0. On the
other hand, a one-dimensional quantum walk is unitarily equivalent to

Z (left') (re] + e s e5] + |es ") (—e s, ef + r.e5)

TEZL

where 0 <7, < 1,60y =0, =0and 0 <6, < 27 (z # 0,1). Therefore, the parametrization
of the unitary equivalence classes of one-dimensional quantum walks is similar to that of
quantum walks on a cycle with N — oo.

There is a natural shift operator S on H, that is,

Sel = el
fori=1,2 and x € V. A quantum walk U on a cycle is called translation-invariant if
SUS* =U.

By the next theorem, unitary equivalence classes of translation-invariant quantum walk on
a cycle are parametrized by two real numbers.

Corollary 3.7 A translation-invariant quantum walk on a cycle is unitarily equivalent to

Una =Y (leT"!)(re] + se3| + |e3 ") (—se'ef + ree3|)
xeV

for some 0 <r<1,s=+1-—1r2and
47 , 2m )
0<ax< N (when N is even), 0<a< N (when N is odd).
Moreover, U, o and U, o with r,r" # 0,1 are unitarily equivalent if and only if r = r' and
a=da.
Proof. We need to consider Theorem and [2.6] again. By Theorem [2Z3] U can be written

U= Y 1N

zeV =1

Since U is translation-invariant, there exist & and ¢; (i = 1,2) in C? such that £ = & and
(F = (; for all x € V. Hence, the unitary W in (@] is described as

W= len

zeV i=1

and is translation-invariant. Therefore, U, = WUW?™ in Theorem is also translation-
invariant and is written as

Ue=>_ (lef™) (il + les ) (m3]) .

zeV

11



where nf = n; and ¥ = 1, for some 7,1, € C%, as we see in ({#). This implies that there
exist 0 <r <1 and a,b,c,d € R such that, for all z € V, r, = r, a, = a and so on. Then,

0, in (@) is
O, =(x—1)(—a—d+a+2l)=(z—1)b,.

By @) and (@), N6, = 0 (mod 27). Since 0 < 6, < 2%, 6, = 0, and hence, 6, = 0
(1 <z < N). Consequently, U, is unitarily equivalent to U, ,.
The remaining assertion follows from Theorem [3.6] immediately. U
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