Skip to main content

Advertisement

Log in

Single-photon transport in waveguides chirally coupled to atoms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the single-photon transport in the scheme composed by N two-level atoms chirally coupled to N + 1 one-dimensional waveguides. The single-photon transport property relates to the chirality and the interference resulting from the scattering. The outcomes provide the potential applications for the optical quantum net and the realization of single photons with ultra-narrow band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)

    Article  ADS  Google Scholar 

  2. Witthaut, D., Sørensen, A.S.: Photon scattering by a three-level emitter in a one-dimensional waveguide. New J. Phys. 12, 043052 (2010)

    Article  ADS  Google Scholar 

  3. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonatorwaveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  4. Huang, J.-F., Shi, T., Sun, C.P., Nori, F.: Controlling single-photon transport in waveguides with finite cross-section. Phys. Rev. A 88, 013836 (2013)

    Article  ADS  Google Scholar 

  5. Liao, Z., Nha, H., Zubairy, M.S.: Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters. Phys. Rev. A 94, 053842 (2016)

    Article  ADS  Google Scholar 

  6. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 30, 718 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Yan, W.-B., Fan, H.: Control of single-photon transport in a waveguide by a single photon. Phys. Rev. A 90, 053807 (2014)

    Article  ADS  Google Scholar 

  8. Shen, J.-T., Fan, S.: Theory of single-photon transport in a single-mode waveguide coupled to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  9. Chang, Y., Gong, Z.R., Sun, C.P.: Multi-atomic mirror for perfect reflection of single photons in a wide band of frequency. Phys. Rev. A 83, 013825 (2011)

    Article  ADS  Google Scholar 

  10. Hoi, I.-C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  11. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  12. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    Article  ADS  Google Scholar 

  13. Yan, W.-B., Liu, B., Zhou, L., Fan, H.: All-optical router at single-photon level by interference. EPL 111, 64405 (2015)

    Google Scholar 

  14. Chen, X.-Y., Zhang, F.-Y., Yu, C.-X.: Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583 (2016)

    Article  ADS  Google Scholar 

  15. Yan, W.-B., Fan, H.: Single-photon quantum routing with multiple output ports. Sci. Rep. 4, 4820 (2014)

    Article  Google Scholar 

  16. Xia, K., Jelezko, F., Twamley, J.: Quantum routing of single optical photons with a superconducting flux qubit. Phys. Rev. A 97, 052315 (2018)

    Article  ADS  Google Scholar 

  17. Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3, 031013 (2013)

    Google Scholar 

  18. Bradford, M., Obi, K.C., Shen, J.T.: Efficient single-photon frequency conversion using a Sagnac interferometer. Phys. Rev. Lett. 108, 103902 (2012)

    Article  ADS  Google Scholar 

  19. Bradford, M., Shen, J.T.: Single-photon frequency conversion by exploiting quantum interference. Phys. Rev. A 85, 043814 (2012)

    Article  ADS  Google Scholar 

  20. Yan, W.-B., Huang, J.-F., Fan, H.: Tunable single photon frequency conversion in a Sagnac interferometer. Sci. Rep. 3, 3555 (2013)

    Article  Google Scholar 

  21. Wang, Z.H., Zhou, L., Li, Y., Sun, C.P.: Controllable single-photon frequency converter via a one-dimensional waveguide. Phys. Rev. A 89, 053813 (2014)

    Article  ADS  Google Scholar 

  22. Liao, Z., Nha, H., Zubairy, M.S.: Single-photon frequency-comb generation in a one-dimensional waveguide coupled to two atomic arrays. Phys. Rev. A 93, 033851 (2016)

    Article  ADS  Google Scholar 

  23. Kimble, H.J.: The quantum internet. Nat. (Lond.) 453, 1023 (2008)

    Article  ADS  Google Scholar 

  24. Pichler, H., Ramos, T., Daley, A.J., Zoller, P.: Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015)

    Article  ADS  Google Scholar 

  25. Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., Pichler, H., Zoller, P.: Chiral quantum optics. Nature 541, 475 (2017)

    Article  ADS  Google Scholar 

  26. Sayrin, C., Junge, C., Mitsch, R., Albrecht, B., O’Shea, D., Schneeweiss, P., Volz, J., Rauschenbeutel, A.: Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015)

    Google Scholar 

  27. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings. Phys. Rev. A 94, 063817 (2016)

    Article  ADS  Google Scholar 

  28. Xia, K., Lu, G., Lin, G., Cheng, Y., Niu, Y., Gong, S., Twamley, J.: Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Rev. A 90, 043802 (2014)

    Article  Google Scholar 

  29. Yan, W.-B., Ni, W.-Y., Zhang, J., Fan, H.: Tunable single-photon diode by chiral quantum physics. Phys. Rev. A 98, 043852 (2018)

    Article  ADS  Google Scholar 

  30. Cheng, M.-T., Ma, X., Fan, J.-W., Xu, J., Zhu, C.: Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter. Opt. Lett. 42, 2914 (2017)

    Article  ADS  Google Scholar 

  31. Yan, C.-H., Li, Y., Yuan, H., Wei, L.F.: Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97, 023821 (2018)

    Article  ADS  Google Scholar 

  32. Cheng, M.-T., Ma, X.-S., Zhang, J.-Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 24, 19988 (2016)

    Article  ADS  Google Scholar 

  33. Zhu, F., Zhao, T., Zhang, H., Li, G.-X., Ficek, Z.: Preparation of a single-photon dark state in a chiral quantum system. Phys. Rev. A 95, 023817 (2017)

    Article  ADS  Google Scholar 

  34. Corzo, N.V., Gouraud, B., Chandra, A., Goban, A., Sheremet, A.S., Kupriyanov, D.V., Laurat, J.: Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117, 133603 (2016)

    Article  ADS  Google Scholar 

  35. Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)

    Article  ADS  Google Scholar 

  36. Das, S., Elfving, V.E., Reiter, F., Sørensen, A.S.: Photon scattering from a system of multilevel quantum emitters: I. Formalism and II. Application to emitters coupled to a one-dimensional waveguide. Phys. Rev. A 97, 043837–043838 (2018)

    Article  ADS  Google Scholar 

  37. Song, G.-Z., Munro, E., Nie, W., Deng, F.-G., Yang, G.-J., Kwek, L.C.: Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide. Phys. Rev. A 96, 043872 (2017)

    Article  ADS  Google Scholar 

  38. Song, G.-Z., Munro, E., Nie, W., Kwek, L.-C., Deng, F.-G., Long, G.-L.: Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Phys. Rev. A 98, 023814 (2018)

    Article  ADS  Google Scholar 

  39. Lodahl, P., Mahmoodian, S., Stobbe, S.: Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Sölner, I., Mahmoodian, S., Hansen, S.L., Midolo, L., Javadi, A., Kirsanske, G., Pregnolato, T., El-Ella, H., Lee, E.H., Song, J.D., Stobbe, S., Lodahl, P.: Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015)

    Article  ADS  Google Scholar 

  41. Yang, J., Lin, G.W., Niu, Y.P., Qi, Y.H., Zhou, F.X., Gong, S.Q.: Tunable narrow band source via the strong coupling between optical emitter and nanowire surface plasmons. arxiv: 1412.8562 (2014)

Download references

Acknowledgements

WBY was supported by the National Science Foundation of China under Grant Nos. 11505023 and 11447134, and the grant from SUSE under No. 2015RC40. ZFY was supported by the National Science Foundation of China under Grant Nos. 11505024 and 11447135, the Natural Science Foundation of Liaoning Province under Grant No. 20180550944, and the Fundamental Research Funds for the Central Universities No. wd01151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, WB., Zhang, FY. Single-photon transport in waveguides chirally coupled to atoms. Quantum Inf Process 20, 16 (2021). https://doi.org/10.1007/s11128-020-02951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02951-8

Keywords

Navigation