Skip to main content
Log in

Tunable fast–slow light conversion based on optomechanically induced absorption in a hybrid atom–optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The fast and slow light effects of a transmitted probe light are researched in a hybrid atom–cavity optomechanical system, which is composed of an optical cavity, a mechanical resonator, and an atomic ensemble. The results show that the fast light generated in this hybrid system can be easily converted into slow light and vice versa, and that this fast–slow light conversion depends on a critical power of the control light, which corresponds to the fact that the probe light can be completely absorbed. Interestingly, this critical power can be modulated by changing the cavity coupling parameter or the atom–cavity coupling strength. Therefore, the fast–slow light conversion can be easily controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyd, R.W., Gauthier, D.J.: Slow and fast light. Prog. Opt. 43, 497 (2002)

    Article  ADS  Google Scholar 

  2. Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783 (2001)

    Article  ADS  Google Scholar 

  3. Stack, D.T., Lee, P.J., Quraishi, Q.: Simple and efficient absorption filter for single photons from a cold atom quantum memory. Opt. Express 23(5), 6822 (2015)

    Article  ADS  Google Scholar 

  4. Scheuer, J., Shahriar, M.S.: Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach. Opt. Lett. 38(18), 3534 (2013)

    Article  ADS  Google Scholar 

  5. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720), 594 (1999)

    Article  ADS  Google Scholar 

  6. Bae, I.H., Moon, H.S.: Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell. Phys. Rev. A 83(5), 053806 (2011)

    Article  ADS  Google Scholar 

  7. Lee, Y.S., Lee, H.J., Moon, H.S.: Phase measurement of fast light pulse in electromagnetically induced absorption. Opt. Express 21(19), 22464 (2013)

    Article  ADS  Google Scholar 

  8. Baba, T.: Slow light in photonic crystals. Nat. Photonics 2(8), 465 (2008)

    Article  ADS  Google Scholar 

  9. Yannopapas, V., Paspalakis, E., Vitanov, N.V.: Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys. Rev. B 80(3), 035104 (2009)

    Article  ADS  Google Scholar 

  10. Cabrera-Granado, E., Díaz, E., Calderón, O.G.: Slow light in molecular-aggregate nanofilms. Phys. Rev. Lett. 107(1), 013901 (2011)

    Article  ADS  Google Scholar 

  11. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  12. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  13. Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520 (2010)

    Article  ADS  Google Scholar 

  14. Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471(7337), 204 (2011)

    Article  ADS  Google Scholar 

  15. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69 (2011)

    Article  ADS  Google Scholar 

  16. Jiang, C., Liu, H., Cui, Y., Li, X., Chen, G., Chen, B.: Electromagnetically induced transparency and slow light in two-mode optomechanics. Opt. Express 21(10), 12165 (2013)

    Article  ADS  Google Scholar 

  17. Liu, Z.X., Wang, B., Kong, C., Xiong, H., Wu, Y.: Magnetic-field-dependent slow light in strontium atom-cavity system. Appl. Phys. Lett. 112(11), 111109 (2018)

    Article  ADS  Google Scholar 

  18. Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179 (2013)

    Article  Google Scholar 

  19. Jiang, C., Cui, Y., Zhai, Z., Yu, H., Li, X., Chen, G.: Tunable slow and fast light in parity-time-symmetric optomechanical systems with phonon pump. Opt. Express 26(22), 28834 (2018)

    Article  ADS  Google Scholar 

  20. Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92(2), 023846 (2015)

    Article  ADS  Google Scholar 

  21. Wang, B., Liu, Z.X., Kong, C., Xiong, H., Wu, Y.: Mechanical exceptional-point-induced transparency and slow light. Opt. Express 27(6), 8069 (2019)

    Article  ADS  Google Scholar 

  22. Wu, Z., Luo, R.H., Zhang, J.Q., Wang, Y.H., Yang, W., Feng, M.: Force-induced transparency and conversion between slow and fast light in optomechanics. Phys. Rev. A 96(3), 033832 (2017)

    Article  ADS  Google Scholar 

  23. Agarwal, G.S., Dey, T.N., Menon, S.: Knob for changing light propagation from subluminal to superluminal. Phys. Rev. A 64(5), 053809 (2001)

    Article  ADS  Google Scholar 

  24. Bigelow, M.S., Lepeshkin, N.N., Boyd, R.W.: Superluminal and slow light propagation in a room-temperature solid. Science 301(5630), 200 (2003)

    Article  ADS  Google Scholar 

  25. Kim, K., Moon, H.S., Lee, C., Kim, S.K., Kim, J.B.: Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line. Phys. Rev. A 68(1), 013810 (2003)

    Article  ADS  Google Scholar 

  26. Sahrai, M., Tajalli, H., Kapale, K.T., Suhail Zubairy, M.: Tunable phase control for subluminal to superluminal light propagation. Phys. Rev. A 70(2), 023813 (2004)

    Article  ADS  Google Scholar 

  27. Stepanov, S., Sánchez, M.P.: Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption. Phys. Rev. A 80(5), 053830 (2009)

    Article  ADS  Google Scholar 

  28. Fredrik, H., Xiaoqing, Z., Albert, S., Tobias, J.K., Hans, H., Rudolf, G.: Electromechanically induced absorption in a circuit nano-electromechanical system. New J. Phys. 14(12), 123037 (2012)

    Article  Google Scholar 

  29. Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77(5), 050307(R) (2008)

    Article  ADS  Google Scholar 

  30. Zhang, J., Zhang, T., Xuereb, A., Vitali, D., Li, J.: More nonlocality with less entanglement in a tripartite atom-optomechanical system. Ann. Phys. 527(1–2), 147 (2015)

    Article  MathSciNet  Google Scholar 

  31. Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91(4), 043902 (2003)

    Article  ADS  Google Scholar 

  32. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  33. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  34. Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804(R) (2004)

    Article  ADS  Google Scholar 

  35. Brennecke, F., Donner, T., Ritter, S., Bourdel, T., Köhl, M., Esslinger, T.: Cavity QED with a Bose-Einstein condensate. Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  36. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)

    MATH  Google Scholar 

  37. Groblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460(7256), 724 (2009)

    Article  ADS  Google Scholar 

  38. Tuchman, A.K., Long, R., Vrijsen, G., Boudet, J., Lee, J., Kasevich, M.A.: Normal-mode splitting with large collective cooperativity. Phys. Rev. A 74(5), 053821 (2006)

    Article  ADS  Google Scholar 

  39. Steck, D.A.: Rubidium 87 D line data, available online at http://steck.us/alkalidata

  40. Moon, H.S., Noh, H.R.: Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the \(5{S}_{1/2}\)-\(5{P}_{3/2}\)-\(5{D}_{5/2}\) transition of \(^{87}{Rb}\) atoms. Phys. Rev. A 84, 033821 (2011)

    Article  Google Scholar 

  41. Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9(10), 820 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Zi-Dan Wang at the University of Hong Kong for his insightful discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11504258 and 11805140), the Natural Science Foundation of Shanxi Province (Grant Nos. 201801D221031, 201801D221021, and 201601D011015), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Xing, HW., Chen, JB. et al. Tunable fast–slow light conversion based on optomechanically induced absorption in a hybrid atom–optomechanical system . Quantum Inf Process 20, 10 (2021). https://doi.org/10.1007/s11128-020-02955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02955-4

Keywords

Navigation