Skip to main content
Log in

Security analysis and improvement of a quantum multi-signature protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Jiang et al. proposed a novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Unfortunately, their protocol cannot resist against the forgery attack and disavowal attack. We investigate the security of Jiang et al.’s quantum multi-signature protocol and demonstrate the signature receiver’s forgery attack. What is more, the signature receiver can extend the forgery attack such that anyone can generate the forgery. On the other hand, their protocol is insecure against the signers’ disavowal attack, too. Then, an improved quantum multi-signature protocol is proposed. In the improved protocol, all the signers share the private keys with the signature receiver and the arbitrator. To generate a quantum multi-signature, all the signers perform the unitary operations controlled by the private keys and the message. The improved protocol overcomes all the security drawbacks of Jiang et al.’s quantum multi-signature. What is more, the arbitrator Trent can be semi-trusted, because he cannot forge any quantum signature of the signers, although Trent shares the private keys with all the signers. At the same time, the new protocol has the same quantum efficiency as that of Jiang et al.’s protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarde, P., Banerjee, A., Dewangan, C.L.: A secure ID based group signature scheme based on factoring and discrete logarithm problem. J. Appl. Security Res. 12(3), 440–446 (2017)

    Article  Google Scholar 

  2. Liu, W.W., Mu, Y., Yang, G.M., Tian, Y.G.: Strong identity-based proxy signature schemes, revisited. Wireless Commun. Mobile Comput. 2018(6925019), 1–11 (2018)

    Google Scholar 

  3. Tan, Z.W.: Efficient pairing-free provably secure identity-based proxy blind signature scheme. Security Commun. Netw. 6(5), 593–601 (2013)

    Article  Google Scholar 

  4. Rastegari, P., Berenjkoub, M., Dakhilalian, M., Susilo, W.: Universal designated verifier signature scheme with non-delegatability in the standard model. Inform. Sci. 479, 321–334 (2019)

    Article  MathSciNet  Google Scholar 

  5. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001)

  7. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  8. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 42325 (2010)

    Article  ADS  Google Scholar 

  10. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51(7), 2135–2142 (2012)

    Article  Google Scholar 

  12. Su, Q., Li, W.M.: Improved quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 52(9), 3343–3352 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wang, C., Liu, J.W., Shang, T.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)

    Article  ADS  Google Scholar 

  14. Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57, 994–1003 (2018)

    Article  MathSciNet  Google Scholar 

  16. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  18. Liu, F., Zhang, K., Cao, T.: Security weaknesses in arbitrated quantum signature protocols. Int. J. Theor. Phys. 53(1), 277–288 (2014)

    Article  MathSciNet  Google Scholar 

  19. Li, Q., Chan, W.H., Wu, C., Wen, Z.: On the existence of quantum signature for quantum Messages. Int. J. Theor. Phys. 52(12), 4335–4341 (2013)

    Article  MathSciNet  Google Scholar 

  20. Zhang, K.J., Qin, S.J., Sun, Y., Song, T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Comment on “Quantum Signature Scheme with Weak Arbitrator”. Int. J. Theor. Phys. 53(6), 1862–1866 (2014)

    Article  Google Scholar 

  22. Zou, X., Qiu, D., Yu, F., Mateus, P.: Security problems in the quantum signature scheme with a weak arbitrator. Int. J. Theor. Phys. 53(2), 603–611 (2014)

    Article  MathSciNet  Google Scholar 

  23. Li, Q., Li, C., Wen, Z., Zhao, W., Chan, W.: On the security of arbitrated quantum signature schemes. J. Phys. A: Math. Theor. 46(1), 015307 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  25. Zhang, L., Sun, H.W., Zhang, K.J., Wang, Q.L., Cai, X.Q.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56, 2433–2444 (2017)

    Article  Google Scholar 

  26. Xin, X.J., He, Q.Q., Wang, Z., Yang, Q.L., Li, F.G.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    Article  ADS  Google Scholar 

  27. Yu, S. X., Oh, C. H.: Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274

  28. Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92(3), 032313 (2015)

    Article  ADS  Google Scholar 

  29. Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A93(1), 012314 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)

    Article  ADS  Google Scholar 

  31. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J., Zuo, H.J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16(11), 276 (2017)

    Article  ADS  Google Scholar 

  32. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.X., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)

    Article  ADS  Google Scholar 

  34. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89(14), 147901 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers Systems and, Signal Processing, pp. 175–179 (1984)

  36. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  37. Menezes, A.J., Oorschot, P.V., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, USA (1996)

    MATH  Google Scholar 

  38. Yang, L., Yang, B., Pan, J.: Quantum public-key encryption with information theoretic security. Proc. SPIE 8440, 84400E − 1-7 (2010)

  39. Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Article  Google Scholar 

  40. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  41. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Xin, X. & Yang, Q. Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf Process 20, 26 (2021). https://doi.org/10.1007/s11128-020-02962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02962-5

Keywords

Navigation