Skip to main content
Log in

The uncertainty of quantum channels in terms of variance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By use of the generalized variance for any operator (not necessarily Hermitian), we introduce the uncertainty of quantum channels as the sum of the generalized variances for the Kraus operators of quantum channels and prove that it satisfies several desirable properties. Then, we establish two trade-off relations between the uncertainty of quantum channels and the entanglement fidelity which is introduced by Schumacher (Phys. Rev. A 54: 2614, 1996) and quantifies how well the channel preserves the entanglement between the input system and the auxiliary system for purification. Finally, we illustrate the uncertainty of quantum channels through some typical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Cimini, V., Gianani, I., Sbroscia, M., Sperling, J., Barbieri, M.: Measuring coherence of quantum measurements. Phys. Rev. Research 1, 033020 (2019)

    Article  ADS  Google Scholar 

  4. Theurer, T., Egloff, D., Zhang, L., Plenio, M.B.: Quantifying operations with an application to coherence. Phys. Rev. Lett. 122, 190405 (2019)

    Article  ADS  Google Scholar 

  5. Li, L., Bu, K., Liu, Z.W.: Quantifying the resource content of quantum channels: An operational approach. Phys. Rev. A 101, 022335 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Liu, Y., Yuan, X.: Operational resource theory of quantum channels. Phys. Rev. Research 2, 012035 (2020)

    Article  ADS  Google Scholar 

  7. Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366 (2001)

    Article  ADS  Google Scholar 

  8. Luo, S., Fu, S., Li, N.: Decorrelating capabilities of operations with application to decoherence. Phys. Rev. A 82, 052122 (2010)

    Article  ADS  Google Scholar 

  9. Galve, F., Plastina, F., Paris, M.G.A., Zambrini, R.: Discording power of quantum evolutions. Phys. Rev. Lett. 110, 010501 (2013)

    Article  ADS  Google Scholar 

  10. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  11. Bu, K., Kumar, A., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Zanardi, P., Styliaris, G., Venuti, L.C.: Coherence-generating power of quantum unitary maps and beyond. Phys. Rev. A 95, 052306 (2017)

    Article  ADS  Google Scholar 

  13. Zhang, L., Ma, Z., Chen, Z., Fei, S.-M.: Coherence generating power of unitary transformations via probabilistic average. Quantum Inf. Process. 17, 186 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Styliaris, G., Venuti, L.C., Zanardi, P.: Coherence-generating power of quantum dephasing processes. Phys. Rev. A 97, 032304 (2018)

    Article  ADS  Google Scholar 

  15. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Schlosshauer, M.A.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  17. Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)

    Article  ADS  Google Scholar 

  18. Luo, S.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681 (2005)

    Article  MATH  Google Scholar 

  19. Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A: Hadrons Nucl. 43, 172 (1927)

    Article  MATH  Google Scholar 

  21. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  22. Schrödinger, E.: About Heisenberg uncertainty relation. Proc. Russ. Acad. Sci. Phys. Math. Sect. 19, 296 (1930)

    Google Scholar 

  23. Gudder, S.: Operator probability theory. Int. J. Pure Appl. Math. 39, 511 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Dou, Y.N., Du, H.K.: Generalizations of the Heisenberg and Schrodinger uncertainty relations. J. Math. Phys. 54, 103508 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dou, Y.N., Du, H.K.: Note on the Wigner-Yanase-Dyson skew information. Int. J. Theor. Phys. 53, 952 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, N., Luo, S., Sun, Y.: Information-theoretic aspects of Werner states. Ann. Phys. 424, 168371, (2021)

  27. Chen, B., Fei, S.M.: Total variance and invariant information in complementary measurements. Commun. Theor. Phys. 72, 065106 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Maccone, L.: Entropic information-disturbance tradeoff. Europhys. Lett. 77, 40002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Luo, S.: Information conservation ang entropy change in quantum measurements. Phys. Rev. A 82, 052103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Luo, S., Li, N.: Decoherence and measurement-induced correlations. Phys. Rev. A 84, 052309 (2011)

    Article  ADS  Google Scholar 

  31. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak Measurement. Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

  32. Zhu, X., Zhang, Y., Liu, Q., Wu, S.: Information gain versus coupling strength in quantum measurements. Phys. Rev. A 85, 042330 (2012)

    Article  ADS  Google Scholar 

  33. Shitara, T., Kuramochi, Y., Ueda, M.: Trade-off relation between information and disturbance in quantum measurement. Phys. Rev. A 93, 032134 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Fan, L., Ge, W., Nha, H., Zubairy, M.S.: Trade-off between information gain and fidelity under weak measurements. Phys. Rev. A 92, 022114 (2015)

    Article  ADS  Google Scholar 

  35. Xi, Z.: Information gain and information leak in quantum measurements. Phys. Rev. A 93, 052308 (2016)

    Article  ADS  Google Scholar 

  36. Buscemi, F., Sacch, M.F.: Information-disturbance trade-off in quantum-state discrimination. Phys. Rev. A 74, 052320 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. Seveso, L., Paris, M.G.A.: Trade-off between information and disturbance in qubit thermometry. Phys. Rev. A 97, 032129 (2018)

    Article  ADS  Google Scholar 

  38. Terashim, H.: Derivative of the disturbance with respect to information from quantum measurements. Quantum Inf. Process 18, 63 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kull, I., Guérin, P.A., Verstraete, F.: Uncertainty and trade-offs in quantum multiparameter estimation. J. Phys. A: Math. Theor. 53, 244001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  41. Barnum, H., Nielsen, M.A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 6 (1998)

    Article  Google Scholar 

  42. Schumacher, B., Nielsen, M.A.: Quantum data processing and error correction. Phys. Rev. A 54, 2629 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. Juan, F.H., Gang, L.J., Bin, S.: Connections of coherent information, quantum discord, and entanglement. Commun. Theor. Phys. 57, 589 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Xiang, Y., Xiong, S.J.: Entanglement fidelity and measurement of entanglement presevation in quantum processes. Phys. Rev. A 76, 014301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  45. Xiang, Y., Xiong, S.J.: Entropy exchange, coherent information, and concurrence. Phys. Rev. A 76, 014306 (2007)

    Article  ADS  Google Scholar 

  46. Sharma, G., Sazim, S., Pati, A.K.: Quantum coherence, coherent information and information gain in quantum measurement. Europhys. Lett. 127, 50004 (2019)

    Article  ADS  Google Scholar 

  47. Luo, S., Zhang, Q.: On skew information. IEEE Trans. Inf. Theory 50, 1778 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wigner, E.P., Yanase, M.M.: Information content of distribution. Proc. Natl. Acad. Sci. U.S.A. 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Fan, Y., Cao, H., Wang, W., Meng, H., Chen, L.: Uncertainty relations with the generalized Wigner-Yanase-Dyson skew information. Quantum Inf. Process. 17, 157 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Luo, S., Sun, Y.: Coherence and complementary in state-channel interaction. Phys. Rev. A 98, 012113 (2018)

    Article  ADS  Google Scholar 

  51. Buscemi, F., Chiribella, G., D’Ariano, G.M.: Inverting quantum decoherence by classical feedback from the environment. Phys. Rev. Lett. 95, 090501 (2005)

    Article  ADS  Google Scholar 

  52. Brádler, K., Hayden, P., Touchette, D., Wilde, M.M.: Trade-off capacities of the quantum Hadamard channels. Phys. Rev. A 81, 062312 (2010)

    Article  ADS  Google Scholar 

  53. Maziero, J.: Hilbert-Schmidt quantum coherence in multiqudit systems. Quantum Inf. Process. 16, 274 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Korzekwa, K., Lostaglio, M., Jennings, D., Rudolph, T.: Quantum and classical entropic uncertainty relations. Phys. Rev. A 89, 042122 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China, Grant No. 12005104, the Youth Innovation Promotion Association of CAS, Grant No. 2020002, the National Natural Science Foundation of China, Grant Nos. 11775298 and 61833010, the National Center for Mathematics and Interdisciplinary Sciences, CAS, Grant No. Y029152K51, the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences, Grant No. 2008DP173182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, N. The uncertainty of quantum channels in terms of variance. Quantum Inf Process 20, 25 (2021). https://doi.org/10.1007/s11128-020-02972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02972-3

Keywords

Navigation