Skip to main content
Log in

New quantum codes from two linear codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A CSS quantum code is succinctly represented as a pair of linear codes \((C_1 ,C_2^{\perp })\) over finite fields \({\mathbb {F}}_{p^e}\) with \(C_2^{\perp }\subset C_1\), where p is a prime and e is a positive integer. In this paper, we present two criteria of the \(C_2^{\perp _s}\subset C_1\) , where \(C_2^{\perp _s}\) denotes the s-Galois dual of \(C_2\) and \(0\le s <e\). Then, using the two criteria, we construct some new quantum codes and a class of new quantum maximum-distance-separable (quantum MDS) codes. In addition, our obtained quantum MDS codes have parameters better than the ones available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  2. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. In: Proceedings of International Symposium on Information Theory (ISIT), pp. 1114–1118 (2006)

  3. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. Calderbank, A.R., Shor, P.W.: Good quantum error correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  7. Chen, B., Ling, S., Zhang, G.: Applications of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  Google Scholar 

  8. Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html

  9. Fan, Y., Zhang, L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84, 473–492 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54(12), 5689–5704 (2008)

    Article  MathSciNet  Google Scholar 

  11. Hurley, T., Hurley, D., Hurley, B.: Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1 (2018)

  12. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2085 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  Google Scholar 

  15. La Guardia, G.G., Palazzo Jr., R.: Constructions of new families of nonbinary CSS codes. Discret. Math. 310, 2935–2945 (2010)

    Article  MathSciNet  Google Scholar 

  16. Liu, X., Yu, L., Hu, Peng: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Field Appl. 55, 21–32 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from Galois LCD codes. Quantum Inf. Process 19(20), 1–15 (2020)

    Google Scholar 

  18. Ma, Z., Lu, X., Feng, K., Feng, D.: On non-binary quantum BCH codes. In: Lecture Notes in Computer Science, vol. 3959, pp. 675–683 (2006)

  19. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52(4), 2493–2496 (1995)

    Article  ADS  Google Scholar 

  20. Steane, A.M.: Simple quantum error correcting codes. Phys. Rev. A. 54, 4741–4751 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)

    Article  MathSciNet  Google Scholar 

  22. Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes. Cryptogr. Commun. 10, 1165–1182 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf Process. 14, 881–889 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Foundation of Hubei Provincial Education Department of China (Grant No. Q20174503) and the National Science Foundation of Hubei Polytechnic University of China (Grant Nos. 12xjz14A and 17xjz03A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, P. New quantum codes from two linear codes. Quantum Inf Process 19, 78 (2020). https://doi.org/10.1007/s11128-020-2575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2575-0

Keywords

Navigation