Skip to main content
Log in

Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the modified flexible representation of quantum images, a novel quantum image encryption algorithm was proposed in this paper. The encryption process performs Arnold scrambling operation to disturb the quantum image information in spatial domain first. Then, quantum wavelet transforms are employed to decompose the scrambled quantum image into multiscale resolution (i.e., a sequence of subimages) in the frequency domain, which are mainly divided into two parts: the low-frequency component (i.e., the approximation) and high-frequency detail information (i.e., the horizontal details, vertical details and diagonal details in each decomposition level). Following that, Arnold scrambling operations are implemented to encrypt the wavelet coefficients within each subimage in the frequency domain once again. Finally, based on inverse quantum wavelet transforms, the encrypted wavelet coefficients can affect the pixel values of the entire reconstructed quantum images. Due to the fact that all the quantum operations are invertible, the decryption process of the encrypted image is performed in a straightforward manner by reversing all of the quantum operations within quantum image encryption process. The proposed encryption algorithm is simulated on a classical computer with MATLAB environments. Experimental results and numerical analysis indicate that the presented algorithm has a good encrypted effect and high security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with quantum computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  Google Scholar 

  2. Stajic, J.: The future of quantum information processing. Science 339, 1163 (2013)

    Article  ADS  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. Lond. Math. Soc. A 400, 97–117 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Symposium on the Theory of Computing, pp. 212–219 (1996)

  6. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  7. Iliyasu, A.M.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Venegas-Andraca, S.B.S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, pp. 134–147 (2003)

  11. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  12. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, B., Iliyasu, A.M., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–407 (2013)

    Article  Google Scholar 

  14. Li, H.S., Zhu, Q.X., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Yang, Y.G., Jia, X., Sun, S.J., Pan, Q.X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)

    Article  Google Scholar 

  19. Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Yuan, S.Z., Mao, X., Xue, Y.L., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  22. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Li, H.S., Chen, X., Xia, H.Y., et al.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

    Article  Google Scholar 

  24. Li, H.S., Fan, P., Xia, H.Y., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 341–354 (2019)

    Article  Google Scholar 

  25. Wang, L., Ran, Q., Ma, J., et al.: QRCI: a new quantum representation model of color digital images. Opt. Commun. 438, 147–158 (2019)

    Article  ADS  Google Scholar 

  26. Li, H.S., Song, S., Fan, P., et al.: Quantum vision representations and multi-dimensional quantum transforms. Inf. Sci. 502, 42–58 (2019)

    Article  MathSciNet  Google Scholar 

  27. Fan, P., Zhou, R.G., Jing, N.H., Li, H.S.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)

    Article  Google Scholar 

  28. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, R.G., Tan, C.Y., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pang, C.Y., Zhou, R.G., Hu, B.Q., et al.: Signal and image compression using quantum discrete cosine transform. Inf. Sci. 473, 121–141 (2019)

    Article  MathSciNet  Google Scholar 

  32. Jiang, N., Lu, X.W., Hu, H., et al.: A novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 57(3), 611–636 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, H.S., Fan, P., Xia, H.Y., Song, S.: Quantum multi-level wavelet transforms. Inf. Sci. 504, 113–135 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Li, H.S., Fan, P., Xia, H.Y., et al.: The multi-level and multi-dimensional quantum wavelet packet transforms. Sci. Rep. 8, 1–23 (2018)

    Article  ADS  Google Scholar 

  35. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption algorithm based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 480–487 (2013)

    Article  MathSciNet  Google Scholar 

  36. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  38. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Li, H.S., Li, C.Y., Chen, X., Xia, H.Y.: Quantum image encryption algorithm based on NASS. Int. J. Theor. Phys. 57(12), 3745–3760 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, H.S., Li, C.Y., Chen, X., Xia, H.Y.: Quantum image encryption based on phase-shift transform and quantum Haar wavelet packet transform. Mod. Phys. Lett. A 34, 1950214 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Tan, R.C., Lei, T., Zhao, Q.M., et al.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform. Int. J. Theor. Phys. 55(12), 5368–5384 (2016)

    Article  MATH  Google Scholar 

  42. Li, L., Abd-El-Atty, B., Abd El-Latif, A.A., Ghoneim, A.: Quantum color image encryption based on multiple discrete chaotic systems. In: 2017 Federated Conference on Computer Science and Information Systems (2017). https://doi.org/10.15439/2017f163

  43. Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17(6), 137 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Ran, Q.W., Wang, L., Ma, J., et al.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 188 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Jiang, N., Dong, X., Hu, H., et al.: Quantum image encryption based on Henon mapping. Inte. J. Theor. Phys. 58(3), 979–991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3488 (1995)

    Article  ADS  Google Scholar 

  47. Arnold, V.I.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968)

    Google Scholar 

  48. Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1997)

    MATH  Google Scholar 

  50. Taubman, D.S.: JPEG2000: Image Compression Fundamentals, Standards and Practice. J. Electron. Imaging (2002)

  51. Olkkonen, H.: Discrete Wavelet Transforms-Algorithms and Applications. IN-TECH (2011)

  52. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  53. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Plan under Grant Nos. 2018YFC1200200 and 2018YFC1200205 and Scientific Research Fund of Hunan Provincial Education Department under Grant No. 18B420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest exists in the submission of this manuscript, and all authors have approved this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, WW., Zhou, RG., Luo, J. et al. Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms. Quantum Inf Process 19, 82 (2020). https://doi.org/10.1007/s11128-020-2579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2579-9

Keywords

Navigation