Skip to main content
Log in

Maximal entanglement and switch squeezing with atom coupled to cavity field and graphene membrane

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the entanglement and squeezing dynamics of the system consisting of an atom coupled to a cavity field and the graphene membrane using dressed states. The effect of the atomic coherent angle on the time evolution of the entanglement and the quadrature squeezing is discussed. We show that the maximally entangled state between the atom and the mechanical resonator can be created. It is found that the entanglement between the atom and the cavity field increases with the increases in the coherent angle. We demonstrate how to switch from no squeezing to large squeezing by manipulating the initial state of an atom. Moreover, the periodic phonon field squeezed state with long time and high degree can be generated, which has a potential application in the field of high-precision measurement and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xue, P., Wang, K., Wang, X.: Efficient multiuser quantum cryptography network based on entanglement. Sci. Rep. 7, 45928 (2017)

    Article  ADS  Google Scholar 

  2. Xiang, Z.H., Huwer, J., Stevenson, R.M., Szymanska, J.S., Ward, M.B., Farrer, I., Ritchie, F.A., Shields, A.J.: Long-term transmission of entangled photons from a single quantum dot over deployed fiber. Sci. Rep. 9, 4111 (2019)

    Article  ADS  Google Scholar 

  3. Qu, F.M., Cheng, Z.G., Zhao, S.P., Zheng, D.N., Jin, Y.R., Xia, L., Wang, R.Q., Liu, G.Q., Pan, X.Y., Liu, B.L., Zhou, D.L., Lu, L., Fan, H.: Quantum computation and quantum information processing. Science 360, 26–30 (2018)

    Article  Google Scholar 

  4. Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein–Podolsky–Rosen pairs of atoms. Phys. Rev. Lett. 79, 1 (1997)

    Article  ADS  Google Scholar 

  5. Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)

    Article  ADS  Google Scholar 

  6. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  7. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Flores-Hidalgo, G., Rojas, M., Rojas, O.: Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size. Phys. Lett. A 381, 1548–1556 (2017)

    Article  ADS  Google Scholar 

  9. Rogers, R., Cummings, N., Pedrotti, L.M., Rice, P.: Atom-field entanglement in cavity QED: nonlinearity and saturation. Phys. Rev. A 96, 052311 (2017)

    Article  ADS  Google Scholar 

  10. Braunstein, S.L., Loock, P.V.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hou, L.L., Sui, Y.X., Wang, S., Xu, X.F.: Quantum interferometry via a coherent state mixed with a squeezed number state. Chin. Phys. B 28, 044203 (2019)

    Article  ADS  Google Scholar 

  12. Ma, S., Li, X., Xie, J., Li, F.L.: Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators. Phys. Rev. A 99, 012325 (2019)

    Article  ADS  Google Scholar 

  13. Su, X.L., Zhao, Y.P., Hao, S.H., Jia, X.J., Xie, C.D., Peng, K.C.: Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Lett. 37, 5178–5180 (2012)

    Article  ADS  Google Scholar 

  14. Slavik, R., Parmigiani, F., Kakande, J., Lundstrom, C., Sjodin, M., Andrekson, P.A.: All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nat. Photon. 4, 690–695 (2010)

    Article  ADS  Google Scholar 

  15. Schnabel, R., Mavalvala, N., McClelland, D.E., Lam, P.K.: Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 121–130 (2010)

    Article  ADS  Google Scholar 

  16. Aasi, J., Abadie, J., Abbott, B.P., et al.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)

    Article  ADS  Google Scholar 

  17. Wang, H., Zhang, Y., Pan, Q., Su, H., Porzio, A., Xie, C.D., Peng, K.C.: Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter. Phys. Rev. Lett. 82, 1414–1417 (1999)

    Article  ADS  Google Scholar 

  18. Brumfiel, G.: Graphene gets ready for the big time. Nature 458, 390–391 (2009)

    Article  Google Scholar 

  19. Zheng, Q., Xu, J., Yao, Y., Li, Y.: Detecting macroscopic quantum coherence with a cavity optomechanical system. Phys. Rev. A 94, 052314 (2016)

    Article  ADS  Google Scholar 

  20. Li, X., Nie, W., Chen, A., Lan, Y.H.: Macroscopic quantum coherence and mechanical squeezing of a graphene sheet. Phys. Rev. A 96, 063819 (2017)

    Article  ADS  Google Scholar 

  21. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  22. Yang, X., Ling, Y., Shao, X., Xiao, M.: Generation of robust tripartite entanglement with a single-cavity optomechanical system. Phys. Rev. A 95, 052303 (2017)

    Article  ADS  Google Scholar 

  23. Jähne, K., Genes, C., Hammerer, K., Wallquist, M., Polzik, E.S., Zoller, P.: Cavity-assisted squeezing of a mechanical oscillator. Phys. Rev. A 79, 063819 (2009)

    Article  ADS  Google Scholar 

  24. Wollman, E.E., Lei, C.U., Weinstein, A.J., Suh, J., Kronwald, A., Marquardt, F., Clerk, A.A., Schwab, K.C.: Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)

    Article  ADS  Google Scholar 

  26. Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Groblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)

    Article  ADS  Google Scholar 

  27. Chen, X., Liu, Y.C., Peng, P., Zhi, Y.Y., Xiao, Y.F.: Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A 92, 033841 (2015)

    Article  ADS  Google Scholar 

  28. Muschik, C.A., Moulieras, S., Bachtold, A., Koppens, F.H.L., Lewenstein, M., Chang, D.E.: Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112, 223601 (2014)

    Article  ADS  Google Scholar 

  29. Liu, Y.X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006)

    Article  ADS  Google Scholar 

  30. Ye, Q., Huang, J., Huang, M., Zhong, H.H., Lee, C.: Dressed state dynamics of two-component Bose-Einstein condensates in state-dependent potentials. Sci. Rep. 8, 4484 (2018)

    Article  ADS  Google Scholar 

  31. Zhang, J.S., Zhang, L.J., Chen, A.X., Abdel-Aty, M.: Analytical solution and applications of three qubits in three coupled modes without rotating wave approximation. Quantum Inf. Process. 17, 125 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chin, S., Huh, J.: Generalized concurrence in boson sampling. Sci. Rep. 8, 6101 (2018)

    Article  ADS  Google Scholar 

  33. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Boyanovsky, D., Jasnow, D.: Coherence of mechanical resonators mediated by coupling to different baths. Phys. Rev. A 96, 012103 (2017)

    Article  ADS  Google Scholar 

  35. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012)

    Article  ADS  Google Scholar 

  36. Stoller, M.D., Park, S.J., Zhu, Y.W.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  ADS  Google Scholar 

  37. Zhao, X.T.: The mechanical properties of graphene, silicene and germanene sheets by molecular dynamics simulation. Ph.D. University of Science and Technology of China (2018)

  38. Zhang, W.P.: Advances in quantum optics. Shanghai Jiao Tong University Press, Shanghai (2014)

    Google Scholar 

  39. Blais, A., Huang, R.S., Wallraffet, A., Girvin, S.M., Scheolkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 61368002), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Research Foundation of the Education Department of Jiangxi Province (Grant No. GJJ13051), the Open Project Program of CAS Key Laboratory of Quantum Information (Grant No. KQI201704) and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., He, G. Maximal entanglement and switch squeezing with atom coupled to cavity field and graphene membrane. Quantum Inf Process 19, 91 (2020). https://doi.org/10.1007/s11128-020-2589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2589-7

Keywords

Navigation