
ar
X

iv
:2

00
1.

11
74

8v
1 

 [
qu

an
t-

ph
] 

 3
1 

Ja
n 

20
20

Detecting EPR steering via two classes of local measurements
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We study the Einstein-Podolsky-Rosen (EPR) steering and present steerability criteria for arbi-

trary qubit-qudit (qudit-qubit) systems based on mutually unbiased measurements (MUMs) and

general symmetric informationally complete measurements (general SIC-POVMs). Avoiding the

usual complicated steering inequalities, these criteria can be more operational than some existing

criteria and implemented experimentally. Detailed examples are given to illustrate the efficiency of

the criteria in both computation and experimental implementation.

I. INTRODUCTION

As a distinctive and key feature in quantum world, the nonlocality challenges our intuition and comprehension
about the nature. In the heart of nonlocality is the concept “EPR paradox” raised by Einstein, Podolsky, and Rosen
in their seminal paper [1], which indicates that there were some conflicts between quantum mechanics and local
realism. They proposed the possible existence of “local hidden variable” (LHV) models. With respect to the EPR
paradox, Schrödinger introduced the concept “steering” [2, 3] to characterize the Alice’s ability of remotely steering
Bob’s state by local measurements. These counterintuitive nonlocal effects, or “spooky action at a distance,” were
collectively dubbed “entanglement”. In 1964, Bell introduced his famous inequality for local hidden variable theories,
which crucially brought the nonlocality debate to an experimentally testable form [4]. Thus, three distinct types of
nonlocal correlations: entanglement, Schrödingers steering and Bell nonlocality, were intuitively elaborated, which
have opened an epoch of unrelenting exploration of quantum correlations.
The nonlocality and quantum entanglement play important roles in our fundamental understandings of physical

world as well as in various novel quantum informational tasks [5]. A bipartite quantum state admits no LHV models
if it violates some Bell inequalities such that the local measurement outcomes can not be modeled by classical random
distributions over probability spaces, termed as Bell nonlocal [6, 7]. A quantum state without entanglement must
admit LHV models. However, not all the entangled quantum states are of nonlocality [8, 9].
Entanglement and Bell nonlocality have attained flourishing developments. The concept of EPR steering was

only introduced in 2007 in the form of a quantum task [10]. The task of quantum steering is that a referee has to
determine, by using the measurement outcomes communicated classically from the two parties to the referee, whether
two spatially separated parties share entanglement, when one of the two parties is untrusted. The notion of EPR
steering was introduced as the inability to construct a local hidden state (LHS) model to explain the joint probabilities
of measurement outcomes. It has been shown that EPR steering is an intermediate between entanglement and Bell
nonlocality. According to the hierarchy of nonlocality, the set of steerable states is a strict subset of entangled states
and a strict superset of Bell nonlocal states [11]. Moreover, the EPR steering is inherently asymmetric with respect
to the observers, unlike quantum nonlocality and entanglement [12]. There exist entangled states which are one-way
steerable, demonstrating steerability from one observer to another spatially separated observer, but not vice-versa
[12–14].
EPR steering not only has foundational significance of describing the nonlocality, but also has a vast range of

information theoretic applications, ranging from one-sided device-independent quantum key distribution [15], advan-
tages in sub-channel discrimination [16], secure quantum teleportation [17], quantum communication [18], detecting
bound entanglement [19], one-sided device-independent randomness generation [20], to one-sided device-independent
self-testing of pure maximally as well as non-maximally entangled states [21].
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Against the above backdrop, from a fundamental viewpoint as well as an information-theoretic perspective, it is
important to detect whether a quantum state is steerable or not. A number of EPR steering criteria have been
proposed till date [22–36]. Recently, in [37, 38], the authors focused on detecting arbitrary qubit-qudit state ρAB and
gave a criterion by detecting the entanglement of a new constructed state, µρAB + (1− µ) I

2 ⊗ ρB, without using any
steering inequality. Following the positive partial transposition criterion [39, 40], the authors in [38] present a brief
idea on how their result can be implemented in experiments for two-qubit states. Although such result consumes
some resources, it provides a way of detecting EPR steering by avoiding steering inequalities.
In [41] the authors formulated an effective tool called mutually unbiased measurements (MUMs) to study the

problem of quantum entanglement. Besides, there is another useful tool called general symmetric informationally
complete measurements (general SIC-POVMs) [42, 43]. Both the MUMs and general SIC-POVMs can be used to
detect quantum entanglement [44–49]. These entanglement criteria are shown to be powerful and can be implemented
experimentally. Due to the relationship between the entanglement and the EPR steering, we present steering criteria
in terms of MUMs and general SIC-POVMs.

II. DETECTION OF EPR STEERING

The EPR steering is usually formulated by considering a quantum information task [10, 11]. Suppose two spatially
separated observers, say Alice and Bob, want to share entanglement between each other. Alice prepares a bipartite
quantum state ρAB and sends one partite to Bob. Bob trusts his own but not Alice’s apparatus. He will be convinced
that they share an entangled state only if there exists evidence that Alice can “steer” Bob’s state by performing
measurements on their respective subsystems. If Alice (Bob) performs a measurement A (B) with measurement
outcomes a (b) on her (his) system, the joint probability of obtaining the outcomes a and b is given by

P (a, b|A,B; ρAB) = Tr[(ΠAa ⊗ΠBb )ρAB ], (1)

where ΠAa and ΠBb are the corresponding projective operators for Alice and Bob, respectively.
The only way that the dishonest Alice pretends to steer Bobs state, is to send some local hidden states (LHS) with

ensemble {pλρλ}, where λ is the hidden variable, ρλ is the state that Alice sends with probability pλ (
∑

λ pλ = 1).
She announces an outcome according to her knowledge about the sent states. In this case the correlation will be of
the form

P (a, b|A,B; ρAB) =
∑

λ

pλ P (a|A, λ)PQ(b|B, ρλ), (2)

where P (a|A, λ) can be any possible probability distribution that Alice designed, PQ(b|B, ρλ) = Tr[ΠBb ρλ] denotes
the quantum probability of outcome b given by measuring B on the local hidden state ρλ. If Bob finds that any LHS
models fail to satisfy such correlation Eq. (2), he has to admit that Alice can steer his system and the corresponding
bipartite state is entangled. In short, the bipartite state ρAB is unsteerable by Alice to Bob if and only if the joint
probability distributions satisfy the relation (2) for all measurements A and B.

A. Detecting EPR Steering via Mutually Unbiased Measurements

Two orthonormal bases B1 = {|i〉}di=1 and B2 = {|j〉}dj=1 of Cd are said to be mutually unbiased if

|〈i|j〉| = 1√
d
, for all i, j = 1, 2, · · · , d. (3)

A set of orthonormal bases {B1,B2, · · · ,Bm} in Cd is called a set of mutually unbiased bases (MUBs) [50] if every pair
of bases in the set is mutually unbiased. In a d dimensional Hilbert space, there are at most d+ 1 pairwise unbiased
bases. This set is called a complete set of MUBs. It is still an open problem whether complete set of MUBs exists for
arbitrary d.

In Ref. [41], the authors introduced the concept of MUMs. Two POVM measurements on Cd , P(b) = {P (b)
n }dn=1,

b = 1, 2, are said to be mutually unbiased measurements if

Tr[P (b)
n ] = 1,

Tr[P (b)
n P

(b
′

)

n
′ ] =

1

d
, b 6= b

′

Tr[P (b)
n P

(b)

n
′ ] = δnn′κ+ (1− δnn′ )

1− κ

d− 1
, (4)
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where 1/d < κ 6 1, and κ = 1 if and only if P(1) and P(2) reduce to projective measurements with respect to two
MUBs.
A general construction of d+1 MUMs has been presented in [41]. Let {Fn,b : n = 1, 2, · · · , d−1, b = 1, 2, · · · , d+1}

be a set of d2 − 1 Hermitian and traceless operators acting on Cd, satisfying Tr(Fn,bFn′,b′) = δnn′δbb′ . Define d(d+1)
operators

F (b)
n =

{

F (b) − (d+
√
d)Fn,b, n = 1, 2, · · · , d− 1,

(1 +
√
d)F (b), n = d,

(5)

where F (b) =
d−1
∑

n=1
Fn,b, b = 1, 2, · · · , d+ 1. Then the d+ 1 MUMs are given by

P (b)
n =

1

d
I+ tF (b)

n , (6)

with b = 1, 2, · · · , d+ 1, n = 1, 2, · · · , d, and t is so chosen such that P
(b)
n > 0. d+ 1 MUMs can be expressed in such

form for any dimension d.
Now we study the steering criteria for qudit-qubit and qubit-qudit quantum systems based on MUMs.

Theorem 1 Let ρAB be a qudit-qubit state in C
d ⊗ C

2 shared by Alice and Bob, and {P(b)}d+1
b=1 and {Q(b)}3b=1 be

any two complete MUMs on C
d and C

2 with the parameter κ1 and κ2, respectively, where P(b) = {P (b)
n }dn=1 and

Q(b) = {Q(b)
n }2n=1. Set R

(b)
n = Q

(b)
n for 1 6 b 6 3, 1 6 n 6 2, and R

(b)
n = I

2 for 3 < b 6 d + 1 or 3 6 n 6 d. Define

J(ρ) =
d+1
∑

b=1

d
∑

n=1
Tr[(P

(b)
n ⊗R

(b)
n )ρ]. If

J(ρAB) >

√
κ1 + 1

√

4κ2 + 4 + (d+ 3)(d− 2)

2µ
− (d+ 1)(1− µ)

2µ
, (7)

then ρAB is steerable from Bob to Alice, where µ ∈ (0, 1√
3
].

Proof. Denote τAB = µρAB + (1− µ)ρA ⊗ I

2 , where ρA = TrB[ρAB] is the reduced state at Alice’s side. we have

J(τAB) =

d+1
∑

b=1

d
∑

n=1

Tr[(P (b)
n ⊗R(b)

n )τAB ]

=

d+1
∑

b=1

d
∑

n=1

Tr[(P (b)
n ⊗R(b)

n )(µρAB + (1− µ)ρA ⊗ I

2
)]

= µ
d+1
∑

b=1

d
∑

n=1

Tr[(P (b)
n ⊗R(b)

n )(ρAB)] + (1− µ)
d+1
∑

b=1

d
∑

n=1

Tr[(P (b)
n ⊗R(b)

n )(ρA ⊗ I

2
)]

= µ
d+1
∑

b=1

d
∑

n=1

Tr[(P (b)
n ⊗R(b)

n )(ρAB)] + (1− µ)
d+1
∑

b=1

d
∑

n=1

Tr[P (b)
n ρA ⊗R(b)

n

I

2
]

= µ

d+1
∑

b=1

d
∑

n=1

Tr[(P (b)
n ⊗R(b)

n )(ρAB)] + (1− µ)

d+1
∑

b=1

d
∑

n=1

Tr[P (b)
n ρA]Tr[R

(b)
n

I

2
]

= µJ(ρAB) + (1− µ)

3
∑

b=1

{
2

∑

n=1

Tr[P (b)
n ρA]Tr[Q

(b)
n

I

2
] +

d
∑

n=3

Tr[P (b)
n ρA]Tr[

I2

4
]}

+ (1− µ)

d+1
∑

b=4

d
∑

n=1

Tr[P (b)
n ρA]Tr[

I
2

4
]

= µJ(ρAB) +
(d+ 1)(1− µ)

2

>
√
κ1 + 1

√

κ2 + 1 +
(d+ 3)(d− 2)

4
.
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The last inequality follows from (7).
In [49], the authors presented a separability criterion: if a bipartite state τAB in Cd1 ⊗ Cd2 (d1 > d2) is separable,

one has J(τ) 6
√
κ1 + 1

√

κ2 + 1 + (d1−d2)(d1+d2+1)
4 . In particular, for the case d1 = d and d2 = 2, one has J(τ) 6

√
κ1 + 1

√

κ2 + 1 + (d+3)(d−2)
4 for all separable states τ in Cd ⊗ C2. From this criterion, we have that τAB must

be entangled. In addition, from that any qudit-qubit state ρAB is EPR steering from Bob to Alice if the state
τAB = µρAB + (1− µ)ρA ⊗ I

2 is entangled [37, 38], we complete the proof. �

On the other hand, for a qubit-qudit state ρAB in C2⊗Cd shared by Alice and Bob, we can detect the EPR steering
from Alice to Bob through the following theorem.

Theorem 2 Let {P(b)}3b=1 and {Q(b)}d+1
b=1 be any two complete MUMs on C2 and Cd with the parameter κ1 and κ2,

respectively, where P(b) = {P (b)
n }2n=1, Q(b) = {Q(b)

n }dn=1. Set R
(b)
n = P

(b)
n , for 1 6 b 6 3, 1 6 n 6 2, and R

(b)
n = I

2 for

3 < b 6 d+ 1 or 3 6 n 6 d. For a qubit-qudit state ρAB in C2 ⊗ Cd shared by Alice and Bob, if

J(ρAB) =

d+1
∑

b=1

d
∑

n=1

Tr[(R(b)
n ⊗Q(b)

n )ρAB] >

√

4κ1 + 4 + (d+ 3)(d− 2)
√
κ2 + 1

2µ
− (d+ 1)(1− µ)

2µ
, (8)

then ρAB is steerable from Alice to Bob, where µ ∈ (0, 1√
3
].

The proof is similar to that of Theorem 1, by defining the state σAB = µρAB+(1−µ) I2 ⊗ρB, where ρB = TrA[ρAB]
is the reduced state at Bob’s side.
As a particular case, let us consider a two-qubit state ρAB in C2 ⊗ C2. Denote σ1, σ2 and σ3 the Pauli matrices.

We have the following corollary:

Corollary 1 Set H(ρAB) = Tr[(σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3)ρAB]. If H(ρAB) >
1

µ
, µ ∈ (0, 1√

3
], then the qubit-qubit

state ρAB is steerable from Bob to Alice and from Alice to Bob.

Proof. A two-qubit state ρAB can be written in the following form under local unitary transformation,

ρAB =
1

4
(I⊗ I+ ~a · ~σ ⊗ I+ I⊗~b · ~σ +

3
∑

i=1

ciσi ⊗ σi), (9)

where ~σ = (σ1, σ2, σ3), ~a = (a1, a2, a3), ~b = (b1, b2, b3) ∈ R3 are the Bloch vectors, ai = Tr[(σi ⊗ I)ρAB ], bi =
Tr[(I⊗ σi)ρAB], ci = Tr[(σi ⊗ σi)ρAB], i = 1, 2, 3.

Let {P (b)
n }2n=1, b = 1, 2, 3, be the three MUMs with the parameter κ constructed from the generalized Gell-Mann

operators [41], and P̄n
(b)

the conjugation of P
(b)
n . It is obvious that {P̄n(b)}2n=1, b = 1, 2, 3 are the three MUMs with

the same parameter κ. We get

J(ρAB) =

3
∑

b=1

2
∑

n=1

Tr[(P (b)
n ⊗ P̄ (b)

n )ρAB]

=
3 + (2κ− 1)(Tr[(σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3)ρAB])

2

=
3 + (2κ− 1)H(ρAB)

2
.

According to Theorem 1 (Theorem 2), we have ρAB is steerable from Bob to Alice and from Alice to Bob, if J(ρAB) >
3µ+2κ−1

2µ for d = 2 and κ1 = κ2 = κ, which follows from H(ρAB) >
1

µ
, µ ∈ (0, 1√

3
]. �

In the following, we detect EPR steering of different families of two-qubit mixed states by using our results. We
show by those detailed examples that our criterion based on MUMs is more convenient and operational, and more
powerful than some criteria using steering inequality.
Example 1. We consider the Werner derivative states [51], which are a class of non-maximally entangled mixed

states and can be obtained by applying a nonlocal unitary operator on the Werner state,

ρwd = p|ψθ〉〈ψθ|+ (1 − p)
I

2
⊗ I

2
, (10)
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FIG. 1: The gray area represents the range of steerability that can be detected experimentally.

where |ψθ〉 = cosθ|00〉 + sinθ|11〉, 0 6 θ 6 π/4, 0 6 p 6 1. From Corollary 1, we have H(ρwd) = p(1 + 2sin(2θ)).

Therefore, ρwd is steerable (from Alice to Bob and from Bob to Alice) for 1/
√
3 6 p < 1 and arcsin[

1

2
(
√
3 − 1)]/2 <

θ 6 π/4, see Fig. 1. It should be noted that this steering criterion can be also derived from the result of Ref. [52].
However, our criteria from Theorem 1 and 2 do not need to know the detailed state. The detection of the steerability
of a state can be done by direct measurements on the state.
Example 2. Consider the following class of maximally steerable mixed states (the states that violate the most the

steering inequality for a given mixedness) proposed in [53],

ρτ =







(1− τ)/4 0 0 (1 − τ)/4
0 (1 + τ)/4 (1 + τ)/4 0
0 (1 + τ)/4 (1 + τ)/4 0

(1− τ)/4 0 0 (1 − τ)/4






, (11)

where −1 6 τ 6 1. By straightforward computation, we have that H(ρτ ) = 1 − 2τ > 1/µ, namely, −1 6 τ 6

(1−
√
3)/2. Thus our criterion can detect the both-way steerability of the state ρτ for −1 6 τ 6 (1−

√
3)/2. Here

the upper bound (1−
√
3)/2 is approximately −0.366 given in [38].

Example 3. Consider maximally entangled mixed states presented in [54],

ρMunro =







h(C) 0 0 C/2
0 1− 2h(C) 0 0
0 0 0 0
C/2 0 0 h(C)






, (12)

where C is the concurrence [55] of ρMunro, h(C) = 1/3 for C < 2/3 and h(C) = C/2 for C > 2/3. Here, the

concurrence of a pure state |ψ〉 is defined by C(|ψ〉) =
√

2(1− Trρ2A) with ρA = TrB [ρAB] the reduced density

matrix. The concurrence of a mixed state ρ is defined by the convex roof extension: C(ρ) = min
{pi,|ψi〉}

∑

i

piC(|ψi〉)

with pi > 0,
∑

i

pi = 1, and the minimization goes over all possible pure state decompositions ρ =
∑

i

pi|ψi〉〈ψi|. It

is straightforward to obtain H(ρMunro) = 4C − 1. Thus, the both-way EPR steerability of ρMunro is detected for

C > (1 +
√
3)/4 ≈ 0.683.

It has been shown that the state (12) demonstrates both-way steerability for C > 0.707 by using the two-setting
linear steering inequality [23]. Therefore, in the region 0.683 < C 6 0.707, the steerability of state ρMunro can be
detected by our criterion, but not by the two-setting linear steering inequality.



6

B. Detecting EPR Steering via general SIC-POVMs

A POVM {Pj} with d2 rank-1 operators acting on C
d is called symmetric informationally (SIC) complete, if

Pj =
1

d
|φj〉〈φj |,

d2
∑

j=1

Pj = I, (13)

where j = 1, 2, · · · , d2, the vectors |φj〉 satisfy |〈φj |φk〉|2 = 1/(d+ 1), j 6= k.
The general SIC measurements were introduced in Refs. [42, 43]. A set of d2 positive semidefinite operators

{Pα}d
2

α=1 on Cd is said to be a general SIC measurements if

d2
∑

α=1

Pα = I, Tr[P 2
α] = a,

Tr[PαPβ ] =
1− da

d(d2 − 1)
, (14)

where α, β ∈ {1, 2, · · · , d2}, α 6= β, the parameter a satisfies 1/d3 < a 6 1/d2. a = 1/d2 if and only if all Pα are rank
one, which gives rise to a SIC-POVM. It can be shown that Tr(Pα) = 1/d for all α, and general SIC-POVM can be

explicitly constructed [43]. Let {Fα}d
2−1
α=1 be a set of d2 − 1 Hermitian, traceless operators acting on Cd, satisfying

Tr(FαFβ) = δα,β. Set F =
d2−1
∑

α=1
Fα. The d

2 operators

Pα =
1

d2
I+ t[F − d(d+ 1)Fα], α = 1, 2, · · · , d2 − 1,

Pd2 =
1

d2
I+ t(d+ 1)F (15)

form a general SIC measurement. Here t should be chosen such that Pα > 0 and the parameter a is given by

a =
1

d3
+ t2(d− 1)(d+ 1)3. (16)

Instead of the MUMs used in Theorem 1 (Theorem 2), now we consider the general SIC-POVMs. We have the
following EPR steering criteria for qubit-qudit and qudit-qubit states. The proofs of the following theorems are similar
to the case of MUMs.

Theorem 3 Let ρAB be a qudit-qubit state in Cd⊗C2 shared by Alice and Bob. Denote P = {Pj}d
2

j=1 and Q = {Qj}4j=1

two sets of general SIC-POVMs on Cd and C2 with the efficiency parameters a1 and a2, respectively. Set Rj = Qj

for j = 1, 2, 3, 4, and Rj = I/4 for j = 5, 6, · · · , d2. Define J(ρ) =
d2
∑

j=1

Tr[(Pj ⊗Rj)ρ]. Then, the ρAB is steerable from

Bob to Alice if

J(ρAB) >

√

a1d2+1
d(d+1)

√

4a2+1
6 + d2−4

16

µ
− 1− µ

4µ
, (17)

where µ ∈ (0, 1√
3
].

Theorem 4 Let ρAB be a qubit-qudit state in C2 ⊗ Cd shared by Alice and Bob, P = {Pj}4j=1 and Q = {Qj}d
2

j=1 be

two sets of general SIC-POVMs on C2 and Cd with the efficiency parameters a1 and a2, respectively. Denote Rj = Pj
for j = 1, 2, 3, 4, Rj = I/4 for j = 5, 6, · · · , d2. If

J(ρAB) >

√

4a1+1
6 + d2−4

16

√

a2d2+1
d(d+1)

µ
− 1− µ

4µ
, (18)

then ρAB is steerable from Alice to Bob, where µ ∈ (0, 1√
3
].

As a direct application of Theorems 3 and 4, for two-qubit states we can get the same results as the ones from
corollary 1. Namely, the EPR steerable criteria based on MUMs works as well as the criteria based on general
SIC-POVMs for two-qubit systems.
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III. CONCLUSION

We have presented criteria for detecting EPR steering of arbitrary qubit-qudit states and qudit-qubit states through
MUMs and general SIC-POVMs. These criteria can be more convenient and efficient, and can be implemented
experimentally. The novelty of the results is that it allows one to detect EPR steering without using the usual
complicated steering inequalities. From experimental point of view, our results enable one to test EPR steering of
an arbitrary qudit-qubit and qubit-qudit state directly through two classes of measurements. Our approach may be
helpful to avoid the locality loophole in EPR steering test, as the degree of correlation required for entanglement
testing via MUMs and general SIC-POVMs is smaller than that for violation of a steering inequality [25]. By detailed
examples it has been shown that our criteria based on MUMs and general SIC-POVMs are more convenient and
operational than some existing criteria in both computation and experimental implementation.
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