Skip to main content
Log in

Quantum channels over graph states using generalized measurement-based quantum computation framework

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Measurement-based quantum computation (MBQC) is an alternative way of quantum information processing that describes the unitary evolution of a quantum state using the cluster state and well-defined sequential measurements. We give a closed form expression for the unitary evolution that a state goes through in terms of the network parameters and measurement outcomes on various qubits of the network. We extend the framework of MBQC to describe quantum channels. Using the new framework, we define a valid quantum unital channel between any two nodes of a graph consisting of nodes connected by edges. We describe the channel in terms of the network parameters and initial state. Our generalization consists of modifying the unitary operation, measurement operators, initial arbitrary state of the qubits at all the nodes of the network. We also study the inverse problem of devising an appropriate approximate unitary in the generalized MBQC to create any given quantum channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jozsa, R.: An introduction to measurement based quantum computation (online). arXiv:quant-ph/0508124v2 [quant-ph]

  2. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  3. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  4. Browne, D.E., Briegel, H.J.: One-way quantum computation (online). arXiv:quant-ph/0301052v2 [quant-ph]

  5. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  6. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum Network coding. In: Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 4393, pp. 610–621 (2007)

  7. Ahlswede, R., Cai, N., Li, S.R., Yeung, R.W.: Network information flow. IEEE Trans. Info. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  Google Scholar 

  8. Hayashi, M.: Prior entanglement between sender enables perfect quantum network coding. Phys. Rev. A 76(4), 040301(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Leung, D., Openheim, J., Winter, A.: Quantum network communication—the butterfly and beyond. IEEE Trans. Info. Theory 56, 3478–3490 (2010)

    Article  MathSciNet  Google Scholar 

  10. Nishimura, H.: Quantum network coding and the current status of its studies. In: International Symposium on Information Theory and Its Applications (2014)

  11. Kobayashi, H., Gall, F.L., Nishimura, H., Rotteler, M.: General scheme for perfect quantum Network coding with free classical communication. In: ICALP 2009. Lecture Notes in Computer Science, vol. 5555, pp. 622–633 (2009)

  12. Kobayashi, H., Gall, F.L., Nishimura, H., Rotteler, M.: Perfect quantum network communication based on classical network coding. In: Proceedings of the International Symposium on Information Theory (2010)

  13. de Beaudrap, N., Roetteler, M.: Quantum linear network coding as one-way quantum computation. In: Proceedings of the Theory of Quantum Computation, pp. 217–233 (2014)

  14. Trojek P.: Efficient generation of photonic entanglement and multiparty quantum communication. Ph.D. Thesis, University of Munich (2007) (online). http://xqp.physik.uni-muenchen.de/publications/theses_phd/phd_trojek.html

  15. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  16. Jaksch, D., Briegel, H.J., Cirac, J.I., Gardiner, C.W., Zoller, P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82(9), 1975–1978 (1999)

    Article  ADS  Google Scholar 

  17. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91(1), 010407 (2003)

    Article  ADS  Google Scholar 

  18. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 10501 (2005)

    Article  ADS  Google Scholar 

  19. Barrett, S.D., Kok, P.: Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71(6), 060310(R) (2005)

    Article  ADS  Google Scholar 

  20. Iten, R., Colbeck, R., Christandl, M.: Quantum circuits for quantum channels. Phys. Rev. A 95(5), 052316 (2017)

    Article  ADS  Google Scholar 

  21. Usher, N., Browne, D.E.: Noise in one-dimentsional measurement-based quatum computing. Quantum Inf. Comput. 17, 1372–1397 (2017)

    MathSciNet  Google Scholar 

  22. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Proceedings of the International School of Physics Quantum Chaos Algorithms and Chaos, vol. 162 (2006)

  23. Raina, A., Garani, S.S.: Recovery from an eavesdropping attack on a qubit of a graph state. Quantum Inf. Process. 18, 274 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  26. Wilde, M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  27. Schönemann, P.H.: A generalized solution of the orthogonal Procrustes problem. Psychometrika 31, 1 (1966)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S. S. Garani would like to thank IISc startup funds for this project. A. Raina is supported by the Ministry of Human Resource Development fellowship, Govt. of India for his Doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayan Srinivasa Garani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 3

Let \(|\phi \rangle \) be the prepared state of all the qubits except the source qubit. Let \(|\psi \rangle \) be the state of the qubit present at the source node. The unitary operation \(\mathcal {U}\) entangles both qubits into a bipartite quantum state:

$$\begin{aligned} |\varphi \rangle&= \mathcal {U}|\psi \rangle |\phi \rangle ^{\otimes N}. \end{aligned}$$
(124)

The unitary \(\mathcal {U}\) in the traditional MBQC is of the following form:

$$\begin{aligned} \mathcal {U}=\displaystyle \prod _{(p,q)\in \mathcal {E}} \mathcal {U}^{(p,q)}, \end{aligned}$$
(125)

where between every pair of nodes (pq) connected by an edge, we have

$$\begin{aligned} \mathcal {U}^{(p,q)}=\mathrm {CZ}. \end{aligned}$$
(126)

However, in the generalization, we need not restrict \(\mathcal {U}^{(p,q)}\) to be of the CZ type. That is, we can think of any arbitrary unitary such at \(\mathcal {U}=e^{-iHt}\) where H is the overall Hamiltonian applied for a time duration t. We can write any general unitary acting on the state \(|\varphi \rangle \) in the following form:

$$\begin{aligned} \mathcal {U}&= \displaystyle \sum _{\underline{k}j,\underline{k}'j'} u_{\underline{k}j,\underline{k}'j'} |f_{k_1}\rangle \langle f_{k_1'}| \otimes |f_{k_2}\rangle \langle f_{k_2'}| \otimes \cdots \otimes |f_{k_{N}}\rangle \langle f_{k_{N}'}| \otimes |e_j\rangle \langle e_{j'}|, \end{aligned}$$

where \(\bigg \{\{|f_{k_1}\rangle \},\{|f_{k_2}\rangle \},\ldots ,\{|f_{k_{N}}\rangle \} \bigg \}\) form the basis for the Hilbert space of N qubits. Here each \(k_i \in \{0,1\}\) refers to the two dimensional Hilbert space of each qubit and \(i \in \{1,2,\ldots ,N\}.\) We denote \(\underline{k}=(k_1,k_2,\ldots ,k_{N})\). In terms of density matrix, we can write

$$\begin{aligned} \sigma&= |\varphi \rangle \langle \varphi |,\\&= \mathcal {U} \big ( |\psi \rangle \langle \psi | \otimes |\phi \rangle \langle \phi |^{\otimes N}\big ) \mathcal {U}^{\dagger },\\&= \bigg ( \displaystyle \sum _{\underline{k}j,\underline{k}'j'} u_{\underline{k}j,\underline{k}'j'} |f_{k_1}\rangle \langle f_{k_1'}| \otimes |f_{k_2}\rangle \langle f_{k_2'}| \otimes \cdots \otimes |f_{k_{N}}\rangle \langle f_{k_{N}'}| \otimes |e_j\rangle \langle e_{j'}| \bigg )\\&\quad \times \bigg (|\psi \rangle \langle \psi | \otimes |\phi \rangle \langle \phi |^{\otimes N}\bigg ) \\&\quad \times \bigg ( \displaystyle \sum _{\underline{l}m,\underline{l}'m'} \bar{u}_{\underline{l}m,\underline{l}'m'} |f_{l_1'}\rangle \langle f_{l_1}| \otimes |f_{l_2'}\rangle \langle f_{l_2}| \otimes \cdots \otimes |f_{l_{N}'}\rangle \langle f_{l_{N}}| \otimes |e_m'\rangle \langle e_{m}| \bigg ), \\&= \displaystyle \sum _{\begin{array}{c} \underline{k},\underline{k}',j,j',\\ \underline{l},\underline{l}',m,m' \end{array}} u_{\underline{k}j,\underline{k}'j'} \bar{u}_{\underline{l}m,\underline{l}'m'} |f_{k_1}\rangle \langle f_{k_1'}|\psi \rangle \langle \psi |f_{l_1'}\rangle \langle f_{l_1}| \otimes \\&\quad |f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \langle \phi |f_{l_2'}\rangle \langle f_{l_2}| \otimes \cdots \otimes |f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \langle \phi |f_{l_{N}'}\rangle \langle f_{l_{N}}| \otimes |e_j\rangle \langle e_{j'}|\phi \rangle \langle \phi |e_{m'}\rangle \langle e_m|. \end{aligned}$$

Suppose we perform measurement in the \(\mathcal {B}\) basis. Let the measurement outcome at the ‘i’th node be \(|g_{t_i}\rangle \). Then, the resultant unnormalized joint state becomes:

$$\begin{aligned} \sigma&= \bigg (|g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}| \otimes \cdots \otimes |g_{t_{N}}\rangle \langle g_{t_{N}}| \otimes I\bigg ) \\&\quad \times \bigg (\displaystyle \sum _{\begin{array}{c} \underline{k},\underline{k}',j,j',\\ \underline{l},\underline{l}',m,m' \end{array}} u_{\underline{k}j,\underline{k}'j'} \bar{u}_{\underline{l}m,\underline{l}'m'} |f_{k_1}\rangle \langle f_{k_1'}|\psi \rangle \langle \psi |f_{l_1'}\rangle \langle f_{l_1}| \otimes |f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \langle \phi |f_{l_2'}\rangle \langle f_{l_2}| \otimes \cdots \\&\quad \cdots \otimes |f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \langle \phi |f_{l_{N}'}\rangle \langle f_{l_{N}}| \otimes |e_j\rangle \langle e_{j'}|\phi \rangle \langle \phi |e_{m'}\rangle \langle e_m|\bigg ) \\&\quad \times \bigg (|g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}| \otimes \cdots \otimes |g_{t_{N}}\rangle \langle g_{t_{N}}| \otimes I\bigg ), \\&= \displaystyle \sum _{\begin{array}{c} \underline{k},\underline{k}',j,j',\\ \underline{l},\underline{l}',m,m' \end{array}} u_{\underline{k}j,\underline{k}'j'} \bar{u}_{\underline{l}m,\underline{l}'m'} |g_{t_1}\rangle \langle g_{t_1}|f_{k_1}\rangle \langle f_{k_1'}|\psi \rangle \langle \psi |f_{l_1'}\rangle \\&\quad \langle f_{l_1}|g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}|f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \langle \phi |f_{l_2'}\rangle \langle f_{l_2}|f_{t_2}\rangle \langle g_{t_2}|\\&\quad \otimes \cdots \otimes |g_{t_{N}}\rangle \langle g_{t_{N}}|f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \langle \phi |f_{l_{N}'}\rangle \langle f_{l_{N}}|g_{t_{N}}\rangle \langle g_{t_{N}}|\\&\quad \otimes |e_j\rangle \langle e_{j'}|\phi \rangle \langle \phi |e_{m'}\rangle \langle e_m|,\\&= \bigg (|g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}| \otimes \cdots \otimes |g_{t_n}\rangle \langle g_{t_n}|\bigg ) \otimes \displaystyle \sum _{\begin{array}{c} \underline{k}',j,j',\\ \underline{l}',m,m' \end{array}} u_{\underline{k}j,\underline{k}'j'} \bar{u}_{\underline{t}m,\underline{l}'m'}\\&\quad \bigg (\langle g_{t_1}|f_{k_1}\rangle \langle f_{k_1'}|\psi \rangle \langle \psi |f_{l_1'}\rangle \langle f_{l_1}|g_{t_1}\rangle \\&\quad \langle g_{t_2}|f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \langle \phi |f_{l_2'}\rangle \langle f_{l_2}|g_{t_2}\rangle \cdots \langle g_{t_{N}}|f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \langle \phi |f_{l_{N}'}\rangle \langle f_{l_{N}}|g_{t_{N}}\rangle \bigg )\\&\quad |e_j\rangle \langle e_j'|\phi \rangle \langle \phi |e_m'\rangle \langle e_m| \\&=\bigg ( |g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}| \otimes \cdots \otimes |g_{t_{N}}\rangle \langle g_{t_{N}}| \bigg )\otimes \displaystyle \sum _{\begin{array}{c} \underline{k},\underline{k}',j,j',\\ \underline{l},\underline{l}',m,m' \end{array}} u_{\underline{k}j,\underline{k}'j'} \bar{u}_{\underline{l}m,\underline{l}'m'} |e_j\rangle \langle e_{j'}|\phi \rangle \\&\quad \bigg (\langle g_{t_{N}}|f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \cdots \langle g_{t_2}|f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \bigg )\big (\langle g_{t_1}| f_{k_1}\rangle \langle f_{k_1'}|\psi \rangle \langle \psi |f_{l_1'}\rangle \langle f_{l_1}|g_{t_1}\rangle \big )\\&\quad \bigg (\langle \phi |f_{l_2'}\rangle \langle f_{l_2}|g_{t_2}\rangle \cdots \langle \phi |f_{l_{N}'}\rangle \langle f_{l_{N}}|g_{t_{N}}\rangle \bigg ) \langle \phi |e_{m'}\rangle \langle e_m| \\&= |g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}| \otimes \cdots \otimes |g_{t_{N}}\rangle \langle g_{t_{N}}| \otimes A_{\underline{t}} \rho A^{\dagger }_{\underline{t}} \\&\text {where } A_{\underline{t}} = \displaystyle \sum _{j,j',\underline{k},\underline{k}'} u_{\underline{k}\,j,\underline{k}'j'} |e_j\rangle \langle e_{j'}|\phi \rangle \langle g_{t_{N}}|f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \langle g_{t_{N-1}}|f_{k_{N-1}}\rangle \langle f_{k_{N-1}'}|\phi \rangle \cdots \\&\quad \cdots \langle g_{t_2}|f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \langle g_{t_1}|f_{k_1}\rangle \langle f_{k_1'}|, \\&\quad \text {and}\quad \underline{t}=(t_1,t_2,\ldots ,t_{N}). \end{aligned}$$

Upon normalization, we get

$$\begin{aligned} \sigma '= |g_{t_1}\rangle \langle g_{t_1}| \otimes |g_{t_2}\rangle \langle g_{t_2}| \otimes \cdots \otimes |g_{t_{N}}\rangle \langle g_{t_{N}}|\otimes \frac{A_{\underline{t}} \rho A^{\dagger }_{\underline{t}}}{\mathrm {Tr}(A_{\underline{t}} \rho A^{\dagger }_{\underline{t}})}. \end{aligned}$$

The state of the qubit at node B can be expressed as

$$\begin{aligned} \mathcal {N}(\rho )&= \displaystyle \sum _{\underline{t}} p_{\underline{t}} \frac{A_{\underline{t}} \rho A^{\dagger }_{\underline{t}}}{\mathrm {Tr}(A_{\underline{t}} \rho A^{\dagger }_{\underline{t}})} \quad \text {where}\quad p_{\underline{t}} = \mathrm {Tr}(A_{\underline{t}} \rho A^{\dagger }_{\underline{t}}), \nonumber \\&= \displaystyle \sum _{\underline{t}} A_{\underline{t}} \rho A^{\dagger }_{\underline{t}}. \end{aligned}$$
(127)

The measurement outcome occurs with a certain probability. Averaging over all outcomes we find that between the source and destination nodes, a quantum channel with the following description manifests:

$$\begin{aligned} \mathcal {N}(\rho )=\displaystyle \sum _{\underline{t}} A_{\underline{t}} \rho A_{\underline{t}}^{\dagger }. \end{aligned}$$
(128)

Therefore, we are able to get Kraus like operators, namely \(\{A_{\underline{t}}\}\) that seem to describe a quantum channel. \(\square \)

Appendix B

Proof of Theorem 4

For the above set to be valid Kraus operators, they need to satisfy the completeness relation, namely:

$$\begin{aligned}&\displaystyle \sum _{\underline{t}} A^{\dagger }_{\underline{t}} A_{\underline{t}} = \mathbb {I}_2. \end{aligned}$$

Consider the sum below

$$\begin{aligned}&\displaystyle \sum _{\underline{t}} A^{\dagger }_{\underline{t}} A_{\underline{t}}\\&\quad = \sum _{\underline{t}}\bigg ( \displaystyle \sum _{j,j',\underline{k},\underline{k}'} u_{\underline{k}\,j,\underline{k}'j'} |e_j\rangle \langle e_{j'}|\phi \rangle \langle g_{t_{N}}|f_{k_{N}}\rangle \langle f_{k_{N}'}|\phi \rangle \cdots \langle g_{t_2}|f_{k_2}\rangle \langle f_{k_2'}|\phi \rangle \langle g_{t_1}|f_{k_1}\rangle \langle f_{k_1'}|\bigg )^{\dagger } \\&\qquad \bigg ( \displaystyle \sum _{l,l',\underline{m},\underline{m}'} u_{\underline{m}\,l,\underline{m}'l'} |e_l\rangle \langle e_{l'}|\phi \rangle \langle g_{t_{N}}|f_{m_{N}}\rangle \langle f_{m_{N}'}|\phi \rangle \cdots \langle g_{t_2}|f_{m_2}\rangle \langle f_{m_2'}|\phi \rangle \langle g_{t_1}|f_{m_1}\rangle \langle f_{m_1'}|\bigg ) \\&\quad = \sum _{\underline{t}}\bigg ( \displaystyle \sum _{j,j',\underline{k},\underline{k}'} \bar{u}_{\underline{k}\,j,\underline{k}'j'} |f_{k_1'}\rangle \langle f_{k_1}|g_{t_1}\rangle \langle \phi |f_{k_2'}\rangle \langle f_{k_2}|g_{t_2}\rangle \cdots \langle \phi |f_{k_{N}'}\rangle \langle f_{k_{N}}|g_{t_{N}}\rangle \langle \phi |e_j'\rangle \langle e_j|\bigg ) \\&\qquad \times \bigg ( \displaystyle \sum _{l,l',\underline{m},\underline{m}'} u_{\underline{m}\,l,\underline{m}'l'} |e_l\rangle \langle e_{l'}|\phi \rangle \langle g_{t_{N}}|f_{m_{N}}\rangle \langle f_{m_{N}'}|\phi \rangle \cdots \langle g_{t_2}|f_{m_2}\rangle \langle f_{m_2'}|\phi \rangle \langle g_{t_1}|f_{m_1}\rangle \langle f_{m_1'}|\bigg ) \\&\quad =\displaystyle \sum _{\underline{t}}\sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l,l',\underline{m},\underline{m}' \end{array}} \bar{u}_{\underline{k}j,\underline{k}'j'} u_{\underline{m}l,\underline{m}'l'} \bigg (|f_{k_1'}\rangle \langle f_{k_1}|g_{t_1}\rangle \langle \phi |f_{k_2'}\rangle \langle f_{k_2}|g_{t_2}\rangle \cdots \langle \phi |f_{k_{N}'}\rangle \langle f_{k_{N}}|g_{t_{N}}\rangle \langle \phi |e_j'\rangle \langle e_j| \bigg )\\&\qquad \times \bigg ( |e_l\rangle \langle e_{l'}|\phi \rangle \langle g_{t_{N}}|f_{m_{N}}\rangle \langle f_{m_{N}'}|\phi \rangle \cdots \langle g_{t_2}|f_{m_2}\rangle \langle f_{m_2'}|\phi \rangle \langle g_{t_1}|f_{m_1}\rangle \langle f_{m_1'}| \bigg ) \\&\quad =\displaystyle \sum _{\underline{t}}\sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l,l',\underline{m},\underline{m}' \end{array}} \bar{u}_{\underline{k}j,\underline{k}'j'} u_{\underline{m}l,\underline{m}'l'} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_N}'\rangle \bigg )\langle \phi |e_j'\rangle \bigg (\langle f_{k_1}|g_{t_1}\rangle \langle f_{k_2}|g_{t_2}\rangle \cdots \langle f_{k_{N}}|g_{t_{N}}\rangle \bigg )\\&\qquad \langle e_j|e_l\rangle \bigg (\langle g_{t_{N}}|f_{m_{N}}\rangle \cdots \langle g_{t_2}|f_{m_2}\rangle \langle g_{t_1}|f_{m_1}\rangle \bigg ) \langle e_{l'}|\phi \rangle \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}| \bigg )\\&\quad =\displaystyle \sum _{\underline{t}}\sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l,l',\underline{m},\underline{m}' \end{array}} \bar{u}_{\underline{k}j,\underline{k}'j'} u_{\underline{m}l,\underline{m}'l'} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg ) \langle \phi |e_j'\rangle \bigg (\langle f_{k_1}|g_{t_1}\rangle \langle f_{k_2}|g_{t_2}\rangle \cdots \langle f_{k_{N}}|g_{t_{N}}\rangle \bigg )\delta _{j,l}\\&\qquad \langle g_{t_{N}}|f_{m_{N}}\rangle \cdots \langle g_{t_2}|f_{m_2}\rangle \langle g_{t_1}|f_{m_1}\rangle \langle e_{l'}|\phi \rangle \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}| \bigg ) \end{aligned}$$
$$\begin{aligned}&\quad =\displaystyle \sum _{\underline{t}} \sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l',\underline{m},\underline{m}' \end{array}} \bar{u}_{\underline{k}j,\underline{k}'j'} u_{\underline{m}j,\underline{m}'l'} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg )\langle \phi |e_j'\rangle \bigg (\langle f_{k_1}|g_{t_1}\rangle \langle f_{k_2}|g_{t_2}\rangle \cdots \langle f_{k_{N}}|g_{t_{N}}\rangle \bigg )\\&\qquad \times \bigg (\langle g_{t_{N}}|f_{m_{N}}\rangle \cdots \langle g_{t_2}|f_{m_2}\rangle \langle g_{t_1}|f_{m_1}\rangle \bigg )\langle e_{l'}|\phi \rangle \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}| \bigg ) \\&\quad =\displaystyle \sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l',\underline{m},\underline{m}' \end{array}} \bar{u}_{\underline{k}j,\underline{k}'j'} u_{\underline{m}j,\underline{m}'l'} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg )\langle \phi |e_j'\rangle \bigg (\sum _{t_1}\langle f_{k_1}|g_{t_1}\rangle \\&\qquad \times \bigg (\sum _{t_2}\langle f_{k_2}|g_{t_2}\rangle \cdots \bigg (\sum _{t_{N}}\langle f_{k_{N}}|g_{t_{N}}\rangle \\&\qquad \langle g_{t_{N}}|f_{m_{N}}\rangle \bigg )\cdots \langle g_{t_2}|f_{m_2}\rangle \bigg )\langle g_{t_1}|f_{m_1}\rangle \bigg )\langle e_{l'}|\phi \rangle \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}|\bigg ) \\&\quad =\displaystyle \sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l',\underline{m},\underline{m}' \end{array}} \delta _{\underline{k},\underline{m}} \,\bar{u}_{\underline{k}j,\underline{k}'j'}\, u_{\underline{m}j,\underline{m}'l'} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg ) \langle \phi |e_j'\rangle \langle e_{l'}|\phi \rangle \\&\qquad \times \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}| \bigg ) \\&\quad =\displaystyle \sum _{\begin{array}{c} j,j',\underline{k},\underline{k}',\\ l',\underline{m}' \end{array}} \bar{u}_{\underline{k}j,\underline{k}'j'} u_{\underline{k}j,\underline{m}'l'} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg )\langle \phi |e_j'\rangle \langle e_{l'}|\phi \rangle \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}| \bigg ) \\&\quad =\displaystyle \sum _{\begin{array}{c} j',\underline{k}',\\ l',\underline{m}' \end{array}} \delta _{\underline{k}',\underline{m'}} \delta _{j',l'}\bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg ) \langle \phi |e_j'\rangle \langle e_{l'}|\phi \rangle \bigg (\langle f_{m_{N}'}|\phi \rangle \cdots \langle f_{m_2'}|\phi \rangle \langle f_{m_1'}| \bigg ) \\&\quad =\displaystyle \sum _{\begin{array}{c} \underline{k}' \end{array}} \bigg (|f_{k_1}'\rangle \langle \phi |f_{k_2}'\rangle \cdots \langle \phi |f_{k_{N}}'\rangle \bigg ) \langle \phi | \bigg (\sum _{j'}|e_j'\rangle \langle e_{j'}| \bigg )|\phi \rangle \bigg (\langle f_{k_{N}'}|\phi \rangle \langle f_{k_2'}|\phi \rangle \langle f_{k_1'}| \bigg ) \\&\quad =\displaystyle \sum _{\underline{k}'} \bigg (|f_{k_1'}\rangle \langle \phi |f_{k_2'}\rangle \cdots \langle \phi |f_{k_{N}'}\rangle \langle f_{k_{N}'}|\phi \rangle \cdots \langle f_{k_2'}|\phi \rangle \langle f_{k_1'}|\bigg )\\&\quad =\displaystyle \sum _{k_1'} \Bigg (|f_{k_1'}\rangle \bigg (\sum _{k_2'}\langle \phi |f_{k_2'}\rangle \cdots \bigg (\sum _{k_{N}'} \langle \phi |f_{k_{N}'}\rangle \langle f_{k_{N}'}|\phi \rangle \bigg ) \cdots \langle f_{k_2'}|\phi \rangle \bigg )\langle f_{k_1'}| \Bigg ) \\&\quad =\mathbb {I}_2. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, A., Garani, S.S. Quantum channels over graph states using generalized measurement-based quantum computation framework. Quantum Inf Process 19, 94 (2020). https://doi.org/10.1007/s11128-020-2597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2597-7

Keywords

Navigation