Skip to main content
Log in

Dynamics and protection of quantum correlations in a qubit–qutrit system subjected locally to a classical random field and colored noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper investigates the evolution and protection of quantum correlations (entanglement and quantum discord (QD) in particular), in a hybrid system formed by a qubit subjected to an external random field and a qutrit subjected to a colored noise generated either by a single or collection of many random bistable fluctuators (RBFs). Two different input states namely the one- and two-parameter class of states of qubit–qutrit are investigated. Entanglement and QD are quantified by means of negativity and geometric QD and their protection investigated by recourse to the weak measurement (WM) and weak measurement reversal (WMR) technique. It is shown that the immunity of entanglement and QD against decoherence can be efficiently increased by properly adjusting the parameters of the input states, no matter the spectrum of the colored noise and the number of RBFs considered. Moreover, it is shown that the WM and WMR technique fails in protecting entanglement in the studied system, but can effectively protect QD from the detrimental impacts of the decoherence. In fact, it is shown that performing a WM followed by a WMR on the qubit of the system allows to shield the QD of the system from decoherence even when the decoherence process is strengthen by considering a large number of RBFs affecting the qutrit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu, J.-S., Sun, K., Li, C.-F., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Article  ADS  Google Scholar 

  2. Orieux, A., D’Arrigo, A., Ferranti, G., et al.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  Google Scholar 

  3. D’Arrigo, A., Lo Franco, R., Benenti, G., et al.: Recovering entanglement by local operations. Ann. Phys. 350, 211 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Man, Z., Xia, Y., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  5. Nosrati, F., Castellini, A., Compagno, G., Lo Franco, R.: Control of noisy entanglement preparation through spatial indistinguishability (2019). arXiv:1907.00136 [quant-ph]

  6. Mortezapour, A., Borji, M.A., Lo Franco, R.: Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments. Laser Phys. Lett. 14, 055201 (2017)

    Article  ADS  Google Scholar 

  7. Lo Franco, R., D’Arrigo, A., Falci, G., Compagno, G., Paladino, E.: Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

    Article  ADS  Google Scholar 

  8. D’Arrigo, A., Benenti, G., Lo Franco, R., et al.: Hidden entanglement, system-environment information flow and non-Markovianity. Int. J. Quantum Inf. 12, 1461005 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Arrigo, A., Lo Franco, R., Benenti, G., et al.: Hidden entanglement in the presence of random telegraph dephasing noise. Phys. Scr. T153, 014014 (2013)

    Article  ADS  Google Scholar 

  10. Mortezapour, A., Lo Franco, R.: Protecting quantum resources via frequency modulation of qubits in leaky cavities. Sci. Rep. 8, 14304 (2018)

    Article  ADS  Google Scholar 

  11. Cianciaruso, M., Bromley, T.R., Roga, W., et al.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  12. Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

    Article  ADS  Google Scholar 

  13. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  14. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    Article  ADS  Google Scholar 

  16. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  17. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  19. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  20. Basit, A., Badshah, F., Ali, H., Ge, G.-Q.: Protecting quantum coherence and discord from decoherence of depolarizing noise via weak measurement and measurement reversal. EPL 118, 30002 (2017)

    Article  ADS  Google Scholar 

  21. Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  22. Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

    Article  ADS  Google Scholar 

  23. Lee, J.-C., Lim, H.-T., Hong, K.-H., Jeong, Y.-C., Kim, M.S., Kim, Y.-H.: Experimental demonstration of delayed-choice decoherence suppression. Nat. Commun. 5, 4522 (2014)

    Article  ADS  Google Scholar 

  24. Lim, H.-T., Lee, J.-C., Hong, K.-H., Kim, Y.-H.: Avoiding entanglement sudden death using single qubit quantum measurement reversal. Opt. Express 22, 19055–19068 (2014)

    Article  ADS  Google Scholar 

  25. Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89, 032303 (2014)

    Article  ADS  Google Scholar 

  26. Li, X.-G., Zou, J., Shao, B.: Protecting non-locality of multipartite states by feed-forward control. Quantum Inf. Process. 17, 123 (2018)

    Article  ADS  MATH  Google Scholar 

  27. Yune, J., Hong, K.-H., Lim, H.-T., Lee, J.-C., et al.: Quantum discord protection from amplitude damping decoherence. Opt. Epress 23, 26012–26022 (2015)

    Article  ADS  Google Scholar 

  28. Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Epress 19, 16309–16316 (2011)

    Article  ADS  Google Scholar 

  29. Xiao, X., Li, Y.-L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  30. Hu, M.-L., Fan, H., Tian, D.-P.: Role of weak measurements on states ordering and monogamy of quantum correlation. Int. J. Theor. Phys. 54, 62–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, Y., Zou, J., Long, Z.-W., Sha, B.: Protecting quantum Fisher information of N-qubit GHZ state by weak measurement with fips against dissipation. Sci. Rep. 7, 6160 (2017)

    Article  ADS  Google Scholar 

  32. Sun, W.-Y., Wang, D., Ding, Z.-Y.O., Ye, Li: Recovering the lost steerability of quantum states within non-Markovian environments by utilizing quantum partially collapsing measurements. Laser Phys. Lett. 14, 125204 (2017)

    Article  ADS  Google Scholar 

  33. Trapani, J.: Stochastic Noise Approach to Non-markovian Decoherence in Continuous Variable Open Quantum Systems. Ph.D. thesis (2017)

  34. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  35. Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quantum Inf. 12, 1560003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored noise environments. Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  37. Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \( 1/f^{\alpha } \) noise. In: Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier (2013). https://doi.org/10.1109/ICNF,6578952

  38. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quantum Inf. 10, 1241005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B 30, 1750046 (2016)

    MATH  Google Scholar 

  40. Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131, 380 (2016)

    Article  Google Scholar 

  41. Kenfack, L.T., Tchoffo, M., Fai, L.C., Fouokeng, G.C.: Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise. Phys. B 511, 123 (2017)

    Article  ADS  Google Scholar 

  42. Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise. Eur. Phys. J. Plus 132, 91 (2017)

    Article  Google Scholar 

  43. Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: Dynamics of tripartite quantum correlations in mixed classical environments: the joint effects of the random telegraph and static noises. Int. J. Quantum Inf. 15, 1750038 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kenfack, L.T., Tchoffo, M., Fai, L.C.: Decoherence and protection of entanglement of a system of three qubits driven by a classical Gaussian distributed fluctuating field. Phys. Lett. A 382, 2818 (2018)

    MathSciNet  Google Scholar 

  45. Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise. Quantum Inf. Process. 17, 76 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Kenfack, L.T., Tchoffo, M., Jipdi, N.M., Fouokeng, G.C., Fai, L.C.: Dynamics of entanglement and state-space trajectories followed by a system of four-qubit in the presence of random telegraph noise: common environment (CE) versus independent environment. J. Phys. Commun. 2, 055011 (2018)

    Article  Google Scholar 

  47. Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Quantum correlations and decoherence dynamics for a qutrit-qutrit system under random telegraph noise. Quantum Inf. Process. 16, 191 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Quantum correlations and coherence dynamics in qutrit–qutrit systems under mixed classical environmental noises. Int. J. Quantum Inf. 15, 1750047 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Disentanglement and quantum states transitions in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state. Quantum Inf. Process. 17, 37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Free and bound entanglement dynamics in qutrit systems under Markov and non-Markov classical noise. Quantum Inf. Process. 17, 190 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Karpat, G., Gedik, Z.: Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166–4171 (2011)

    Article  ADS  MATH  Google Scholar 

  52. Tchoffo, M., Tsokeng, A.T., Tiokang, O.M., Nganyo, P.N., Fai, L.C.: Frozen entanglement and quantum correlations of one-parameter qubit–qutrit states under classical noise effects. Phys. Lett. A 383, 1856–1864 (2019)

    Article  ADS  Google Scholar 

  53. Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92, 032311 (2015)

    Article  ADS  Google Scholar 

  54. Lo Franco, R., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)

    Article  ADS  Google Scholar 

  55. Guo, Y., Fang, M., Zhang, S., Liu, X.: Quantum correlations of three-qubit states driven by a classical random external field. Phys. Scr. 90, 035103 (2015)

    Article  ADS  Google Scholar 

  56. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  57. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  58. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)

    Article  ADS  Google Scholar 

  60. Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)

    Article  ADS  Google Scholar 

  61. Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Tufarelli, T., MacLean, T., Girolami, D., et al.: The geometric approach to quantum correlations: computability versus reliability. J. Phys. A Math. Theor. 46, 275308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Piani, M.: The problem with the geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  64. Andersson, E., Cresser, J.D., Hall, M.J.W.: Finding the Kraus decomposition from a master equation and vice versa. J. Mod. Opt. 54, 1695 (2007)

    Article  ADS  MATH  Google Scholar 

  65. Cresser, J.D., Facer, C.: Master equation with memory for systems driven by classical noise. Opt. Commun. 283, 773 (2010)

    Article  ADS  Google Scholar 

  66. Sun, W.-Y., Wang, D., Shi, J.-D., Ye, L.: Exploration quantum steering, non-locality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Kenfack.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: time-evolved density matrices of the system

When the system is initially prepared in the one-parameter class of states of qubit–qutrit, its final state after interacting with the noises takes the following form:

$$\begin{aligned} \rho ^{1p} \left( t\right)= & {} {\mathcal {Y}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } +{\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) \nonumber \\&+\, {\mathcal {E}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 00 \right| } +{\left| 02 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 02 \right| } \right) \nonumber \\&+\, {\mathcal {A}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\left| 12 \right\rangle } {\left\langle 12 \right| } \right) +{\mathcal {B}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\left| 11 \right\rangle } {\left\langle 11 \right| } \right) \nonumber \\&+\, {\mathcal {C}}\left( t\right) \left( {\left| 02 \right\rangle } {\left\langle 02 \right| } +{\left| 10 \right\rangle } {\left\langle 10 \right| } \right) +{\mathcal {F}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 00 \right| } \right) \nonumber \\&+\, {\mathcal {J}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 01 \right| } \right) +{\mathcal {N}}\left( t\right) \left( {\left| 02 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 02 \right| } \right) , \end{aligned}$$
(A1)

with

$$\begin{aligned} {\mathcal {A}}\left( t\right)= & {} \frac{1}{4} \left( 3p-1\right) \vartheta \left( t\right) \xi \left( t\right) +\frac{\left( 1-3p\right) }{16} \vartheta _{2} \left( t\right) +\frac{1}{16} \left( 3-p\right) ,\\ {\mathcal {F}}\left( t\right)= & {} \frac{\left( 1-p\right) }{16} \vartheta _{2} \left( t\right) \xi \left( t\right) +\frac{\left( 3p-1\right) }{4} \vartheta \left( t\right) +\frac{3\left( 1-p\right) }{16} \xi \left( t\right) ,\\ {\mathcal {E}}\left( t\right)= & {} \left( 1-p\right) \frac{\xi \left( t\right) \left( \vartheta _{2} \left( t\right) -1\right) }{16}; {\mathcal {Y}}\left( t\right) =\frac{\left( 3p-1\right) }{16} \left( 1-\vartheta _{2} \left( t\right) \right) ,\\ {\mathcal {N}}\left( t\right)= & {} \frac{\left( 1-3p\right) }{4} \vartheta \left( t\right) +\frac{3\left( 1-p\right) }{16} \xi \left( t\right) +\frac{\left( 1-p\right) }{16} \vartheta _{2} \left( t\right) \xi \left( t\right) ,\\ {\mathcal {C}}\left( t\right)= & {} \frac{\left( 1-3p\right) }{4} \vartheta \left( t\right) \xi \left( t\right) +\frac{\left( 1-3p\right) }{16} \vartheta _{2} \left( t\right) +\frac{\left( 3-p\right) }{16},\\ {\mathcal {B}}\left( t\right)= & {} \frac{\left( 3p-1\right) }{8} \vartheta _{2} \left( t\right) +\frac{1}{8} \left( p+1\right) ,\\ {\mathcal {J}}(t)= & {} \frac{\left( p-1\right) }{8} \left( \vartheta _{2}\left( t\right) -1\right) \xi (t). \end{aligned}$$

In the case of two-parameter class of states the following form is obtained:

$$\begin{aligned} \rho ^{2p} \left( t\right)= & {} {\mathcal {A}}\left( t\right) {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\mathcal {B}}\left( t\right) {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\mathcal {C}}\left( t\right) {\left| 02 \right\rangle } {\left\langle 02 \right| }\nonumber \\&+\, {\mathcal {Y}}\left( t\right) {\left| 10 \right\rangle } {\left\langle 10 \right| } +{\mathcal {E}}\left( t\right) +{\left| 11 \right\rangle } {\left\langle 11 \right| } +{\mathcal {F}}\left( t\right) {\left| 12 \right\rangle } {\left\langle 12 \right| }\nonumber \\&+\,{\mathcal {G}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } \right) +{\mathcal {I}}\left( t\right) \left( {\left| 00 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 00 \right| } \right) \nonumber \\&+\, {\mathcal {J}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 01 \right| } \right) +{\mathcal {K}}\left( t\right) \left( {\left| 01 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 01 \right| } \right) \nonumber \\&+\,{\mathcal {L}}\left( t\right) \left( {\left| 02 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 02 \right| } \right) +{\mathcal {N}}\left( t\right) \left( {\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) , \end{aligned}$$
(A2)

with

$$\begin{aligned} {\mathcal {F}}\left( t\right)= & {} \frac{1}{32} \Big ( 4\alpha \left( 3+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) - \left( -5+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) \times \\&\times \,\left( 3\beta +\mu \right) + \left( -1+4\vartheta \left( t\right) -3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {G}}\left( t\right)= & {} \frac{1}{32} \left( \vartheta \left( t\right) _{2} -1\right) \left( 4\alpha +3\beta \left( \xi \left( t\right) -1\right) -\mu \left( 1+3\xi \left( t\right) \right) \right) ,\\ {\mathcal {A}}\left( t\right)= & {} \frac{1}{32} \Big ( 4\alpha \left( 3-4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) +\left( 5+4\vartheta \left( t\right) -\vartheta _{2} \left( t\right) \right) \times \\&\times \,\left( 3\beta +\mu \right) +\left( 1+4\vartheta \left( t\right) +3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {B}}\left( t\right)= & {} \frac{1}{16} \Big ( -4\alpha \left( \vartheta _{2} \left( t\right) -1\right) +\left( 3+\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) -\\&\,\left( 1+3\vartheta _{2} \left( t\right) \right) \left( \beta -\alpha \right) \xi \left( t\right) \Big ),\\ {\mathcal {I}}\left( t\right)= & {} \frac{1}{8} \left( \beta -\mu \right) \left( -\vartheta _{2} \left( t\right) +\vartheta \left( t\right) \left( \xi \left( t\right) -1\right) +\xi \left( t\right) \right) ,\\ {\mathcal {J}}\left( t\right)= & {} \frac{1}{8} \left( \beta -\mu \right) \left( \vartheta \left( t\right) +\vartheta _{2} \left( t\right) +\xi \left( t\right) +\vartheta \left( t\right) \xi \left( t\right) \right) ,\\ {\mathcal {K}}\left( t\right)= & {} -\frac{1}{8} \left( \beta -\mu \right) \left( \vartheta \left( t\right) -\vartheta _{2} \left( t\right) +\xi \left( t\right) \left( \vartheta \left( t\right) -1\right) \right) ,\\ {\mathcal {C}}\left( t\right)= & {} \frac{1}{32} \Big (4\alpha \left( 3+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) -\left( -5+4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) \\&-\,\left( -1+4\vartheta \left( t\right) -3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {Y}}\left( t\right)= & {} \frac{1}{32} \Big (4\alpha \left( 3-4\vartheta \left( t\right) +\vartheta _{2} \left( t\right) \right) +\left( 5+4\vartheta \left( t\right) -\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) \\&-\,\left( 1+4\vartheta \left( t\right) +3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ),\\ {\mathcal {N}}\left( t\right)= & {} \frac{1}{32} \left( \vartheta _{2} \left( t\right) -1\right) \left( 4\alpha -3\beta \left( 1+\xi \left( t\right) \right) +\mu \left( 3\xi \left( t\right) -1\right) \right) ,\\ {\mathcal {L}}\left( t\right)= & {} -\frac{1}{8} \left( \beta -\mu \right) \left( \vartheta _{2} \left( t\right) +\vartheta \left( t\right) \left( \xi \left( t\right) -1\right) -\xi \left( t\right) \right) ,\\ {\mathcal {E}}\left( t\right)= & {} \frac{1}{16} \Big (-4\alpha \left( \vartheta _{2} \left( t\right) -1\right) +\left( 3+\vartheta _{2} \left( t\right) \right) \left( 3\beta +\mu \right) \\&+\,\left( 1+3\vartheta _{2} \left( t\right) \right) \left( \beta -\mu \right) \xi \left( t\right) \Big ). \end{aligned}$$

where the time-dependent function \( \vartheta _{n}(t) (n=1,2) \) and \(\xi (t) \) are the decoherence factors whose explicit expressions can be written as follows:

$$\begin{aligned} \xi (t)= & {} \exp \left( -\dfrac{\Gamma \tau _{c}}{2}\left[ \dfrac{t}{\tau _{c}} +\exp \left( -\dfrac{t}{\tau _{c}}\right) -1 \right] \right) \end{aligned}$$
(A3)
$$\begin{aligned} \vartheta _{n}(t)= & {} \left[ \int _{\gamma _{1}}^{\gamma _{2}}\Psi _{n}(\gamma ,t){{\,\mathrm{P}\,}}(\gamma )\mathrm{d}\gamma \right] ^{N}; \end{aligned}$$
(A4)

with

$$\begin{aligned} \begin{aligned}&\Psi _{n}(\gamma ,t)= \left\{ \begin{aligned}&\displaystyle \mathrm{e}^{\displaystyle -\gamma t}\left[ \begin{aligned}&\dfrac{\gamma \sinh \left( t\sqrt{\gamma ^{2}-n^{2}\lambda ^{2}}\right) }{\sqrt{\gamma ^{2}-n^{2}\lambda ^{2}}}+\cosh \left( t\sqrt{\gamma ^{2}-n^{2}\lambda ^{2}}\right) \end{aligned} \right] ,\gamma >n\lambda \\ \\&\displaystyle \mathrm{e}^{\displaystyle -\gamma t}\left[ \begin{aligned}&\dfrac{\gamma \sin \left( t\sqrt{n^{2}\lambda ^{2}-\gamma ^{2}}\right) }{\sqrt{n^{2}\lambda ^{2}-\gamma ^{2}}}+ \cos \left( t\sqrt{n^{2}\lambda ^{2}-\gamma ^{2}}\right) \end{aligned} \right] ,\gamma <n\lambda \end{aligned}, \right. \end{aligned} \end{aligned}$$
(A5)

Appendix B: final state of system after performing the WM and WMR control scheme

$$\begin{aligned} \rho ^{1p}(t,m,m_{r})= & {} {\mathcal {A}}(t)\left( {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\left| 12 \right\rangle } {\left\langle 12 \right| } \right) +{\mathcal {B}}(t)\left( {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\left| 11 \right\rangle } {\left\langle 11 \right| } \right) \nonumber \\&+\,{\mathcal {C}}(t)\left( {\left| 02 \right\rangle } {\left\langle 02 \right| } +{\left| 10 \right\rangle } {\left\langle 10 \right| } \right) +{\mathcal {I}}(t)\left( {\left| 02 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 02 \right| } \right) \nonumber \\&+\, {\mathcal {E}}(t)\left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } +{\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) \nonumber \\&+\,{\mathcal {F}}(t)\left( {\left| 00 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 00 \right| } +{\left| 02 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 02 \right| } \right) \nonumber \\&+\, {\mathcal {G}}(t)\left( {\left| 00 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 00 \right| } \right) +{\mathcal {H}}(t)\left( {\left| 01 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 01 \right| } \right) ,\nonumber \\ \end{aligned}$$
(B1)

where

$$\begin{aligned} {\mathcal {B}}(t)= & {} \frac{3\left( \left( p-\frac{1}{3} \right) \vartheta _{2}(t) +\frac{1}{3} \left( 1+p\right) \right) \left( 2+\left( \xi (t)-1\right) m\right) \left( m_{r} -1\right) }{\left( 4\xi (t)m_{r} -4m_{r} +8\right) m+8m_{r} -16},\\ {\mathcal {I}}(t)= & {} \frac{3\left( \vartheta _{2}(t) -1\right) \left( 2+\left( \xi (t)-1\right) m\right) \left( m_{r} -1\right) \left( p-\frac{1}{3} \right) }{\left( 16+8\left( \xi (t)-1\right) m_{r} \right) m+16m_{r} -32},\\ {\mathcal {E}}(t)= & {} \frac{\sqrt{1-m_{r} } \left( p-1\right) \xi (t)\left( \vartheta _{2}(t) -1\right) \sqrt{1-m} }{\left( 8+\left( 4\xi (t)-4\right) m\right) m_{r} +8m-16} ,\\ {\mathcal {F}}(t)= & {} \frac{\sqrt{1-m_{r} } \sqrt{1-m} \left( \left( p-1\right) \left( \vartheta _{2}(t) +3\right) \xi (t)+4\vartheta (t)\left( 1-3p\right) \right) }{4\xi (t)mm_{r} -4\left( m_{r} -2\right) \left( m-2\right) } ,\\ {\mathcal {G}}(t)= & {} \frac{-\sqrt{1-m_{r} } \left( p-1\right) \xi (t)\left( \vartheta _{2}(t) -1\right) \sqrt{1-m} }{\left( 4+\left( 2\xi (t)-2\right) m\right) m_{r} +4m-8} ,\\ {\mathcal {H}}(t)= & {} \frac{\sqrt{1-m_{r} } \sqrt{1-m} \left( \left( p-1\right) \left( \vartheta _{2}(t) +3\right) \xi (t)-4\vartheta (t)\left( 1-3p\right) \right) }{4\xi (t)mm_{r} -4\left( m_{r} -2\right) \left( m-2\right) } ,\\ {\mathcal {A}}(t)= & {} \frac{\begin{aligned}-12\Bigg (&\left( \left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{1}{12} \right) p-\frac{\vartheta _{2}(t) }{12} -\frac{1}{4} -\frac{1}{3} \vartheta (t)\right) \left( \xi (t)-1\right) m-\\ {}&-2\left( p-\frac{1}{3} \right) \vartheta (t)\xi (t)+\left( \frac{1}{6} +\frac{\vartheta _{2}(t) }{2} \right) p-\frac{\vartheta _{2}(t) }{6} -\frac{1}{2}\Bigg )\left( m_{r} -1\right) \end{aligned}}{\left( 8\xi (t)m_{r} -m_{r} +16\right) m+16m_{r} -32},\\ {\mathcal {C}}(t)= & {} \frac{\begin{aligned}12\Bigg (&\left( \xi (t)-1\right) \left( \left( \vartheta (t)-\frac{1}{4} \vartheta _{2}(t) -\frac{1}{12} \right) p+\frac{\vartheta _{2}(t) }{12} +\frac{1}{4} -\frac{1}{3} \vartheta (t)\right) m-\\ {}&-2\left( p-\frac{1}{3} \right) \vartheta (t)\xi (t)-\left( \frac{1}{6} +\frac{\vartheta _{2}(t) }{2} \right) p+\frac{\vartheta _{2}(t) }{6} +\frac{1}{2}\Bigg )\left( m_{r} -1\right) \end{aligned}}{\left( 8\xi (t)m_{r} -8m_{r} +16\right) m+16m_{r} -32}, \end{aligned}$$
$$\begin{aligned} \rho ^{2p}(t,m,m_{r})= & {} {\mathcal {A}}(t) {\left| 00 \right\rangle } {\left\langle 00 \right| } +{\mathcal {B}}(t) {\left| 01 \right\rangle } {\left\langle 01 \right| } +{\mathcal {C}}(t) {\left| 02 \right\rangle } {\left\langle 02 \right| } +{\mathcal {E}}(t) {\left| 10 \right\rangle } {\left\langle 10 \right| } \nonumber \\&+\,{\mathcal {H}}(t) \left( {\left| 00 \right\rangle } {\left\langle 02 \right| } +{\left| 02 \right\rangle } {\left\langle 00 \right| } \right) +{\mathcal {I}}(t) \left( {\left| 00 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 00 \right| } \right) \nonumber \\&+\,{\mathcal {J}}(t) \left( {\left| 01 \right\rangle } {\left\langle 10 \right| } +{\left| 10 \right\rangle } {\left\langle 01 \right| } \right) +{\mathcal {K}}(t) \left( {\left| 01 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 01 \right| } \right) \nonumber \\&+\,{\mathcal {L}}(t) \left( {\left| 02 \right\rangle } {\left\langle 11 \right| } +{\left| 11 \right\rangle } {\left\langle 02 \right| } \right) +{\mathcal {M}}(t) \left( {\left| 10 \right\rangle } {\left\langle 12 \right| } +{\left| 12 \right\rangle } {\left\langle 10 \right| } \right) \nonumber \\&+\,{\mathcal {F}}(t) +{\left| 11 \right\rangle } {\left\langle 11 \right| } +{\mathcal {G}}(t) {\left| 12 \right\rangle } {\left\langle 12 \right| }, \end{aligned}$$
(B2)

where

$$\begin{aligned} {{\,\mathrm{T}\,}}= & {} 2\left( \left( \xi (t) -1\right) m_{r} +2\right) m+4\left( m_{r} -2\right) ,\\ {\mathcal {I}}(t)= & {} \frac{ -\Bigg ( \left( \vartheta (t)+1\right) \xi (t)-\vartheta (t)-\vartheta _{2}(t)\Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}},\\ {\mathcal {J}}(t)= & {} \frac{-\Bigg ( \left( \vartheta (t)+1\right) \xi (t)\vartheta (t)+\vartheta _{2}(t) \Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}},\\ {\mathcal {K}}(t)= & {} \frac{\Bigg (\left( \vartheta (t)-1\right) \xi (t)+\vartheta (t)-\vartheta _{2}(t) \Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}} ,\\ {\mathcal {L}}(t)= & {} \frac{\Bigg (\left( \vartheta (t)-1\right) \xi (t)-\vartheta (t)+\vartheta _{2}(t) \Bigg )\left( \beta -\mu \right) \sqrt{\left( 1-m\right) \left( 1-m_{r} \right) } }{2{{\,\mathrm{T}\,}}} ,\\ {\mathcal {A}}(t)= & {} \frac{\left( 1-m_{r}\right) }{{{\,\mathrm{T}\,}}} \Bigg (\left( \xi (t)-1\right) \left( \left( -\frac{1}{2} \vartheta (t)+\frac{3}{8} \vartheta _{2}(t) -\frac{7}{8}\right) \beta \right. \\&\,\left. +\left( -\frac{1}{2} \vartheta (t)-\frac{1}{8} \vartheta _{2}(t) -\frac{3}{8} \right) \mu +\left( \vartheta (t)-\frac{1}{4} \vartheta _{2}(t) -\frac{3}{4} \right) \alpha \right) m\\&-\,\frac{1}{2} \left( \vartheta (t)+\frac{3}{2} \vartheta _{2}(t) +\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t)\\&+\, \left( \frac{3}{4} \vartheta _{2}(t) -\frac{3}{2} \vartheta (t)-\frac{15}{8} \right) \beta +\left( \frac{1}{8} \vartheta _{2}(t) -\frac{1}{2} \vartheta (t)-\frac{5}{8} \right) \mu \\&+\,2\left( -\frac{1}{4} \vartheta _{2}(t) +\vartheta (t)-\frac{3}{4} \right) \alpha \Bigg ),\\ {\mathcal {B}}(t)= & {} \frac{\left( 1-m_{r}\right) }{2{{\,\mathrm{T}\,}}} \Bigg (\left( \xi (t)-1\right) \left( \left( -\frac{3}{2} \vartheta _{2}(t) -\frac{5}{2} \right) \beta \right. \\&\left. +\,\left( \alpha +\frac{1}{2} \mu \right) \left( \vartheta _{2}(t) -1\right) \right) m+\frac{3}{2} \left( \vartheta _{2}(t) +\frac{1}{3} \right) \left( \beta -\mu \right) \xi (t)\\&+\,\left( -\frac{3}{2} \vartheta _{2}(t) -\frac{9}{2} \right) \beta +\left( -\frac{3}{2} -\frac{1}{2} \vartheta _{2}(t) \right) \mu +2\alpha \left( \vartheta _{2}(t) -1\right) \Bigg ),\\ {\mathcal {C}}(t)= & {} \frac{\left( m_{r} -1\right) }{{{\,\mathrm{T}\,}}} \Bigg ( \left( \xi (t)-1\right) \left( \left( -\frac{1}{2} \vartheta (t)-\frac{3}{8} \vartheta _{2}(t) +\frac{7}{8} \right) \beta \right. \\&\left. +\,\left( -\frac{1}{2} \vartheta (t)+\frac{1}{8} \vartheta _{2}(t) +\frac{3}{8} \right) \mu +\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{3}{4} \right) \alpha \right) m \\&-\,\frac{1}{2} \left( \vartheta (t)-\frac{3}{2} \vartheta _{2}(t) -\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t) \\&+\,\left( -\frac{3}{8} \vartheta _{2}(t) -\frac{3}{2} \vartheta (t)+\frac{15}{8} \right) \beta +\left( -\frac{1}{8} \vartheta _{2}(t) -\frac{1}{2} \vartheta (t)+\frac{5}{8} \right) \mu \\&+\,2\left( \frac{1}{4} \vartheta _{2}(t) +\vartheta (t)+\frac{3}{4} \right) \alpha \Bigg ), \end{aligned}$$
$$\begin{aligned} {\mathcal {E}}(t)= & {} \frac{1}{6{{\,\mathrm{T}\,}}} \Bigg ( -8\left( \left( -\frac{1}{2} \vartheta (t)+\frac{3}{8} \vartheta _{2}(t) -\frac{7}{8} \right) \beta \right. \\&\left. +\,\left( -\frac{1}{2} \vartheta (t)-\frac{1}{8} \vartheta _{2}(t) -\frac{3}{8} \right) \mu +\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) -\frac{3}{4} \right) \alpha \right) \left( \xi (t)+1\right) m \\&+\,4\left( \vartheta (t)+\frac{3}{4} \vartheta _{2}(t) +\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t)\\&+\, \left( -12\vartheta (t)+3\vartheta _{2}(t) -15\right) \beta +\left( -4\vartheta (t)+\vartheta _{2}(t) -5\right) \mu \\&+\,16\left( \vartheta (t)-\frac{1}{4} \vartheta _{2}(t) -\frac{3}{4} \right) \alpha \Bigg ),\\ {\mathcal {F}}(t)= & {} -\frac{\xi (t)+1}{2{{\,\mathrm{T}\,}}} \Bigg ( \left( -\frac{3}{2} \vartheta _{2}(t) -\frac{5}{2} \right) \beta \\&+\,\left( \alpha +\frac{\mu }{2} \right) \left( \vartheta _{2}(t) -1\right) m-3\left( \vartheta _{2}(t) +\frac{1}{3} \right) \left( \beta -\mu \right) \xi (t)\\&+\,\left( -3\vartheta _{2}(t) -9\right) \beta -\left( \vartheta _{2}(t) +3\right) \mu +4a\left( \vartheta _{2}(t)-1\right) \Bigg ),\\ {\mathcal {G}}(t)= & {} \frac{1}{8{{\,\mathrm{T}\,}}} \Bigg ( 8\left( \left( -\frac{1}{2} \vartheta (t)-\frac{3}{8} \vartheta _{2}(t) +\frac{7}{8} \right) \beta \right. \\&+\,\left( -\frac{1}{2} \vartheta (t)+\frac{1}{8} \vartheta _{2}(t) +\frac{3}{8} \right) \mu \\&\left. +\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{3}{4}\right) \alpha \right) \left( \xi (t)+1\right) m \\&-\,4\left( \vartheta (t)-\frac{3}{4} \vartheta _{2}(t) -\frac{1}{4} \right) \left( \beta -\mu \right) \xi (t)\\&+\, \left( 12\vartheta (t)+3\vartheta _{2}(t) -15\right) \beta +\left( 4\vartheta (t)+\vartheta _{2}(t) -5\right) \mu \\&-\,16\left( \vartheta (t)+\frac{1}{4} \vartheta _{2}(t) +\frac{3}{4} \right) \alpha \Bigg ),\\ {\mathcal {H}}(t)= & {} \frac{\left( \left( \xi (t)-1\right) \left( -\frac{3}{2} \beta +\frac{\mu }{2} +\,\alpha \right) m+\left( \frac{3}{2} \beta -\frac{3}{2} \mu \right) \xi (t)+2\alpha -\frac{\mu }{2} -\frac{3\beta }{2} \right) \left( m_{r} -1\right) \left( \vartheta _{2}(t) -1\right) }{4{{\,\mathrm{T}\,}}},\\ {\mathcal {M}}(t)= & {} \frac{\left( \vartheta _{2}(t) -\,1\right) \left( \left( -\frac{3\beta }{2} +\frac{\mu }{2} +\,\alpha \right) \left( \xi (t)+1\right) m+\left( \frac{3\beta }{2} -\,\frac{3\mu }{2} \right) \xi (t)+\frac{3\beta }{2} -\,2\alpha +\frac{\mu }{2} \right) }{4{{\,\mathrm{T}\,}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack, L.T., Tchoffo, M., Javed, M. et al. Dynamics and protection of quantum correlations in a qubit–qutrit system subjected locally to a classical random field and colored noise. Quantum Inf Process 19, 107 (2020). https://doi.org/10.1007/s11128-020-2599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2599-5

Keywords

Navigation