
An Investigation on Support Vector Clustering for Big Data in 

Quantum Paradigm 

Arit Kumar Bishwasa, *, Ashish Manib, Vasile Paladec 
  

a AIIT, Amity University Uttar Pradesh, Noida, India, aritkumar.official@gmail.com 
b EEE, ASET, Amity University Uttar Pradesh, Amity University, Noida, India, amani@amity.edu 

c Faculty of Engineering, Environment and Computing, Coventry University, UK, vasile.palade@coventry.ac.uk 

 
 

 

Abstract 

The support vector clustering algorithm is a well-known clustering algorithm based on support vector 

machines using Gaussian or polynomial kernels. The classical support vector clustering algorithm works well 

in general, but its performance degrades when applied on big data. In this paper, we have investigated the 

performance of support vector clustering algorithm implemented in a quantum paradigm for possible runtime 

improvements. We have developed and analyzed a quantum version of the support vector clustering algorithm. 

The proposed approach is based on the quantum support vector machine [1] and quantum kernels (i.e., 

Gaussian and polynomial). The classical support vector clustering algorithm converges in 𝑂(𝑀2𝑁) runtime 

complexity, where 𝑀 is the number of input objects and 𝑁 is the dimension of the feature space. Our proposed 

quantum version converges in ~𝑂(𝑙𝑜𝑔𝑀𝑁) runtime complexity. The clustering identification phase with 

adjacency matrix exhibits  𝑂(√𝑀3𝑙𝑔𝑀) runtime complexity in the quantum version, whereas the runtime 

complexity in the classical implementation is 𝑂(𝑀2). The proposed quantum version of the SVM clustering 

method demonstrates a significant speed-up gain on the overall runtime complexity as compared to the 
classical counterpart. 
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1. INTRODUCTION 

 

Clustering is a popular unsupervised machine-learning task, which groups input objects into multiple sets 

based on some similarities. There are many well-defined clustering algorithms, which work well on many 

practical problems. K-Means clustering [2] [3] is one of the most widespread clustering algorithms, but it has 

the drawback of needing to define the number of clusters in advance; although some upgraded versions, such 

as K-Means++ [4], handle this limitation to some extent. Clustering approaches in [5] [6] show the advantages 

of using classification algorithms for clustering. One of the popular classical approaches is to use the one-

class SVM (Support Vector Machines) and extend it to clustering problems, known as the support vector 

clustering method [7]. One of recent interesting progress in the field of quantum clustering discusses a 

distributed secure quantum machine learning protocol, which helps in classifying two-dimensional vectors 

to different clusters [8]. A higher number of dimensions will always be a tough problem to deal with in 

designing a clustering algorithm. Recently, the authors of [9] have discussed a new approach with the so-

called quantum A-optimal projection (QAOP) algorithm. Dimensionality reduction is not discussed in this  

paper, however, it can be a promising technique and can be used with our proposed work. Our work focuses 

on the formulation of the quantum version of the support vector clustering (SVC) algorithm, but the above 
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mentioned recent research works are interesting to address and explore in future work, which could be aligned 

with our current research investigations.     

 

One-class SVM is an efficient way of estimating the density of a population [10] [11]. A transformation such 

that, 𝐹: 𝑥 → 𝐹(𝑥), helps in formulating the one-class SVM concept. Here, the function transforms the input 

object space into a higher dimensional feature space, such that the object points within dense localities are 

projected further from the origin of the assumed coordinate system. In the input object space, the support 

vectors outline the closed contours around the dense regions in the feature space, where a related decision 

function does the prediction as positive when the objects are inside the contour and negative elsewhere. This 

method is very useful in applications such as image retrieval, fault detection, context change detection, etc. 

[12].    

 

The support vector clustering method is based on one-class SVM and on using Gaussian/polynomial kernels. 

In support vector clustering, we form contours of input objects in a higher dimensional feature space. We 

replace the dot products of input feature vectors, say ⟨𝑥⃗𝑖 , 𝑥⃗𝑗⟩, in our one-class SVM formulation with a kernel 

function 𝐾(𝑥⃗𝑖 , 𝑥⃗𝑗) −popularly known as the “kernel trick” - where 𝐾 may be a linear, polynomial or Gaussian 

kernel. These contour’s boundaries are defined by support vectors and consist of a set of some specific input 

objects. We consider each contour boundary as a cluster. Once we define the contour boundaries, we can 

separate the clusters with the help of an adjacency matrix. 

 

In this paper, we investigate the support vector clustering method in a quantum paradigm. In the proposed 

approach, we have used a one-class version of a quantum support vector machine with quantum kernels (i.e, 

quantum polynomial kernels as well as quantum Gaussian kernels [13] [14]) to design the support vector 

clustering algorithm. Our analysis shows that the proposed quantum version of support vector clustering 

shows significant performance gains (more than quadratic speed up gain in overall runtime complexity) as 

compared to the classical counterpart. This performance gain with a quantum version of support vector 

clustering (SVC) is significant especially when the input dataset is big data. 

 

2. SUPPORT VECTOR MACHINES 

 

2.1 Classical Least Square SVM 

 
Support vector machines with the kernel trick is a very popular classification technique used for nonlinear 

datasets, where we first map the input objects into a higher dimensional feature space by using a kernel 

function. It then constructs an optimal separating hyperplane (with maximum separating margins) in the 

higher dimensional space to classify the data objects. In [15], the least square support vector machine (LS-

SVM) has been discussed, which is based on the least square technique for function estimation [16]. In LS-

SVM, instead of quadratic programming, we solve a linear system of equations in order to find the solutions.  

We formulate the problem by using equality constraints rather than inequality constraints. 

 

With a given set of 𝑀 training objects {𝑦𝑖 , 𝑥𝑖}𝑖=1
𝑀 , where 𝑥𝑖 ∈  ℝ

𝑁 denotes the ith input and 𝑦𝑖 ∈  ℝ the ith 

output, the SVM objective is to construct a classifier of the form: 

 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛 {∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏
𝑀
𝑖=1 }.       (1) 

 

where, 𝛼𝑖 are support values, 𝑏 is a real constant and 𝐾(𝑥, 𝑥𝑖) is any kernel function. Let us suppose  

 

𝑤𝑇(𝑥𝑖) + 𝑏 ≥ +1,      𝑖𝑓 𝑦𝑖 = +1         (2) 

𝑤𝑇(𝑥𝑖) + 𝑏 ≤ −1,      𝑖𝑓 𝑦𝑖 = −1,          (3) 

 



 

  

where 𝑤⃗⃗⃗ is the normal vector to the hyperplane. 

 

The above equations (2 & 3) can be written in the following equivalent formulation: 

 

𝑦𝑖[𝑤
𝑇(𝑥𝑖) + 𝑏 ≥ 1],     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… ,𝑀         (4) 

 

and the classifier is obtained as the solution to the following optimization problem: 

 

𝑚𝑖𝑛
𝑤,𝑏,𝑒

  𝒥𝐿𝑆 (𝑤, 𝑏, 𝑒) =
1

2
 𝑤𝑇𝑤 + 𝛾 

1

2
 ∑ 𝑒𝑖

2𝑀
𝑖=1       (5) 

 

which is subject to the following equality constraints: 

 

𝑦𝑖[𝑤
𝑇(𝑥𝑖) + 𝑏] = 1 − 𝑒𝑖 ,     𝑖 = 1, … ,𝑀       (6) 

 

and 𝛾 
1

2
 ∑ 𝑒𝑖

2𝑀
𝑖=1  is a penalty term, where 𝑒𝑖 is the error on example 𝑖 and  𝛾 is the hyperparameter to tune the 

regularization versus the sum squared error. The Lagrangian function is then defined as: 

 

ℒ(𝑤, 𝑏, 𝑒; 𝛼) = 𝒥𝐿𝑆 −∑ 𝛼𝑖[𝑦𝑖{𝑤
𝑇(𝑥⃗𝑖) + 𝑏} − 1 + 𝑒𝑖]

𝑀
𝑖=1            (7) 

 

We can write the conditions for optimality as linear systems [17-18], by taking partial derivatives of the 

Lagrangian function and eliminating the variables 𝑒𝑖  𝑎𝑛𝑑 𝑤, and we get: 

 

(
0 1⃗⃗𝑇

1⃗⃗ 𝐾 + 𝛾−1𝕀
) (𝑏

𝛼⃗⃗⃗
) = (0

𝑦⃗⃗
)          (8) 

 

⟹ 𝐹(𝑏
𝛼⃗⃗⃗
) = (0

𝑦⃗⃗
).          (9) 

 

where, 𝐾𝑖𝑗 = 𝐾(𝑥⃗𝑖
𝑇 , 𝑥⃗𝑗) = 𝑥⃗𝑖

𝑇 . 𝑥⃗𝑗  is the kernel matrix, 𝕀 is the 𝑀 ×𝑀 identity matrix, 𝑦⃗ = (𝑦1, … , 𝑦𝑀)
𝑇, 𝑀 

components vector 1⃗⃗ = (1,… , 1)𝑇 , 𝛼⃗ = (𝛼1, … , 𝛼𝑀)
𝑇 . The support vector machine parameters are then 

determined by : 

 

(𝑏, 𝛼⃗𝑇)𝑇 = 𝐹−1(0, 𝑦⃗𝑇)𝑇        (10) 

 

Now, an unknown input object 𝑥⃗ can be classified by the following equation:  

 

(0, 𝑦⃗𝑇)𝑇 = 𝐹(𝑏, 𝛼⃗𝑇)𝑇 ≈ 𝑓(𝑥⃗) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦⃗𝑖𝐾(𝑥⃗𝑖 , 𝑥⃗) + 𝑏
𝑀
𝑗=1 )    (11) 

 

We can extend the discussion to multiclass classification using two very popular approaches, i.e., “one-

against-all” and “all-pair” [19] approaches. In the one-against-all approach, we first build and train 𝑘 

quantum binary classifiers.  Each of these quantum binary classifiers then classifies a given query state |𝑥⃗⟩ 

with some probability value. Then, the one-against-all algorithm finds the class for which the corresponding 

classifier’s probability confidence score is highest, which is the predicted class. 

 

In the all-pair approach, for each pair of classes, there is a binary classification problem, and hence we build 

(𝑘 (𝑘 − 1)/2 ) binary classifiers, where 𝑘 is the number of classes. Each binary classifier is then trained with 

associated training examples; therefore, we also define (𝑘(𝑘 − 1)/2) sets of training examples. During 

prediction, we apply a voting mechanism, where we apply all (𝑘(𝑘 − 1)/2) classifiers to an unseen data 

object and the class that got the highest number of " + 1" predictions is the class predicted by the combined 

classifier. 

 



   

2.2 Quantum Least Square SVM 

 

The quantum version of least square support vector machines (binary or/and multiclass) has been discussed 

in [13] [1] [20], which exhibits an exponential speed up as compared to the classical least square support 

vector machines (binary and multiclass). The quantum least squares support vector machine formulation 

allows us using the phase estimation and the quantum matrix inversion algorithm. 

 

On the same lines as classical support vector machines, we formulate a general multiclass quantum SVM [1]. 

For the quantum formulation, we create the quantum states |𝑏𝑗 , 𝛼⃗𝑗⟩ by describing the hyperplane with the 

quantum matrix inversion algorithm. Therefore, the task is to solve the following equation (12) & (13): 

 

𝐹𝑗̂(|𝑏𝑗 , 𝛼⃗𝑗⟩) =  |𝑦⃗𝑗⟩; j =1, 2, 3, … 𝑘(𝑘 − 1)/2      (12) 

 

=> |𝑏𝑗 , 𝛼⃗𝑗⟩ =  𝐹̂𝑗
−1(|𝑦⃗𝑗⟩),        (13) 

 

where 𝐹̂ is the (𝑀 + 1) × (𝑀 + 1) dimensional normalized operator of 𝐹, and 𝑀 is the number of training 

examples. We now need to determine the quantum SVM parameters for the 𝑗𝑡ℎ  classifier, where 𝐹̂𝑗 =

(
0 1⃗⃗𝑇

1⃗⃗ 𝐾̂𝑗 + Υ𝑗
−1𝕀
), 𝐾̂𝑗 is the kernel matrix for the 𝑗𝑡ℎ classifier, Υ𝑗 determines the relative weight of the SVM 

objective and the training error for 𝑗𝑡ℎ classifier, 𝑦⃗𝑗 = (𝑦𝑗1, … , 𝑦𝑗𝑀)
𝑇 , 𝑏𝑗 are the biases,  𝛼𝑗⃗⃗⃗⃗ = (𝛼𝑗1, … , 𝛼𝑗𝑀)

𝑇 

are non-sparse vectors and act as the distance from the optimal margin for the 𝑗𝑡ℎ classifier, and 𝑘 is the 

number of classes. The classification of an unknown quantum state |𝑥⟩ is determined by the success probability 

𝑃𝑗
(𝑓,𝑠)

 (as shown in Table 1) of a swap test between |𝑏𝑗 , 𝛼⃗𝑗⟩ and |𝑥⃗⟩. |𝑥⃗⟩ will be classified as +1 or −1 with 

the quantum all-pair algorithm based on the following conditions [1]: 
 

TABLE I. Probability conditions for classification 
 

Conditions Classification of |𝑥⃗⟩ Class classified as 

𝑃𝑗
(𝑓,𝑠)

< 
1

2
 +1 𝑓 

𝑃𝑗
(𝑓,𝑠)

≥ 
1

2
 −1 𝑠 

 

where 𝑃𝑗
(𝑓,𝑠)

 characterizes the success probability of classifying data object as 𝑓 𝑜𝑟 𝑠 upon measurement by 

𝑗𝑡ℎ classifier. 

 

The speedup gain is achievable during the training phase because of the quantum implementation of the 

matrix inversion algorithm [21], non-sparse density matrices [22] and simulating sparse Hamiltonians [23].  

 

For solving, 𝐹𝑗̂(|𝑏𝑗 , 𝛼⃗𝑗⟩) =  |𝑦⃗𝑗⟩; j =1, 2, 3, … 𝑘(𝑘 − 1)/2, we determine the matrix exponential of 𝐹̂𝑗. The 

𝐹̂𝑗 can be written as 𝐹̂𝑗 =  
(𝐽𝑗+𝐾𝑗+𝛾𝑗

−1 𝕀𝑗)

𝑡𝑟𝐹𝑗
, where 𝐽𝑗 = (

0 1⃗⃗𝑇

1⃗⃗ 0
) is a star graph, 𝐾𝑗  is the kernel matrix and 𝛾𝑗  

regulates the relative weight of training error and least square SVM objectives. We then obtain the following 

exponential: 

 

𝑒
−𝑖𝐹̂𝑗Δ𝑡

𝑡𝑟𝐹 = 𝑒
−𝑖𝐽𝑗Δ𝑡

𝑡𝑟𝐹  𝑒
−𝑖𝐾𝑗Δ𝑡

𝑡𝑟𝐹  𝑒
−𝑖𝛾𝑗

−1𝕀𝑗Δ𝑡

𝑡𝑟𝐹 + 𝑂(∆𝑡2)         (14) 

 

where the eigenvectors and eigenvalues of the star graph 𝐽𝑗  are respectively 𝐸±
𝐽_𝑣𝑎𝑙

= ±
1

√2
(|0⟩  ±

1

√𝑀
∑ |𝑟⟩𝑀
𝑟=1 ) & 𝐸±

𝐽_𝑣𝑒𝑐
= ±√𝑀. 



 

  

 

With several copies of the density matrix 𝜌𝑗 , it is promising to implement 𝑒−𝑖𝜌𝑗𝑡 [24] for computing the 

matrix inverse 𝐾𝑗̂
−1

, where 𝐾𝑗̂ is a non-sparse normalized Hermitian matrix. Based on the discussion in [24], 

the exponentiation runtime complexity is determined as 𝑂(𝑙𝑜𝑔𝑁). 𝐾𝑗̂ is a normalized Hermitian matrix, so it 

is a potential candidate for quantum self-analysis [24]. We therefore evaluate 𝑒−𝑖𝐾𝑗̂Δ𝑡 as 

 

𝑒
−𝑖ℒ𝐾𝑗̂Δ𝑡(𝜌) ≈ 𝜌 − 𝑖Δ𝑡[𝐾𝑗̂, 𝜌] + 𝑂(Δ𝑡

2).        (15) 

 

where, ℒ𝐾𝑗̂ = [𝐾𝑗̂, 𝜌] and 𝑁 is the dimension of the feature vector. 

Equation (14) helps us in obtaining the eigenvectors and eigenvalues by doing a quantum phase estimation.  

 

With reference to equation (12), we extend |𝑦⃗𝑗⟩ to obtain the eigenvalues ((𝜆𝑟)𝑗) and eigenvectors (|(𝐸𝑟)𝑗⟩) 

of 𝐹̂ as |𝑦̃𝑗⟩ = ∑ ⟨(𝐸𝑟)𝑗|𝑦̃𝑗⟩|(𝐸𝑟)𝑗⟩
𝑀𝑗
(𝑓,𝑠)

+1

𝑟=1 . Phase estimation generates a state, which stores the respective 

eigenvalues  |𝑦̃𝑗⟩ |0⟩ →  ∑
⟨(𝐸𝑟)𝑗|𝑦̃𝑗⟩

(𝜆𝑟)𝑗

𝑀𝑗
(𝑓,𝑠)

+1

𝑙=1 |(𝐸𝑟)𝑗⟩, where we see an inversion of the eigenvalues and 

obtain the eigenvalues by performing uncomputing [25] [26] the eigenvalue register and a controlled rotation 

around it. 

 

Therefore, the |𝑏𝑗 , 𝛼⃗𝑗⟩ is obtained by inverting eigenvalues (as discussed in the last paragraph) and expressing 

|𝑦⃗𝑗⟩ in the eigenvectors. The overall runtime training complexity for the 𝑗𝑡ℎ case is 𝑂(𝑙𝑜𝑔𝑀𝑗
(𝑓,𝑠)

𝑁), where 

each of the 𝑀𝑗
(𝑓,𝑠)

examples are having either 𝑓 or 𝑠 as class value. 

 

Here the kernel matrix plays a vital role in the dual formulation of equation (7), and the dot product 

calculation. In the quantum version of the algorithm, the dot product is calculated quantum mechanically 

[24]. We calculate a dot product of two training instances as follows: at first, using an ancilla variable we 

generate two quantum states, |𝜓⟩ and |𝜑⟩, then we evaluate the sum of the squared norms of the two input 

objects. We then compare the two input objects and execute a projective measurement on the ancilla alone.  

 

Let us consider a linear kernel 𝐾𝑙𝑖𝑛 = 𝑥𝑖
𝑇𝑥𝑗 = (

|𝑥𝑖|
2+|𝑥𝑗|

2−|𝑥𝑖−𝑥𝑗|
2

2
), for which we estimate the dot product. 

With the help of QRAM (Quantum Random Access Memory) [27], we construct the quantum state 

 

|𝜓⟩ =
1

√2
(|0⟩|𝑥𝑖⟩ + |1⟩|𝑥𝑗⟩),        (16) 

 

and estimate |𝜑⟩ =
1

(|𝑥𝑖|
2+|𝑥𝑗|

2)
(|𝑥𝑖||0⟩ − |𝑥𝑗||1⟩). The quantum state is 

1

√2
(|0⟩ − |1⟩)⊗ |0⟩, which gets 

evolved with the Hamiltonian: 

 

𝐻 = (|𝑥𝑖||0⟩⟨0| + |𝑥𝑗||1⟩⟨1|) ⊗ 𝜎𝑥        (17) 

 

This results in the following state 

 
1

√2
(cos(|𝑥𝑖|𝑡) |0⟩ − cos (|𝑥𝑗|𝑡)|1⟩)⊗ |0⟩ −

𝑖

√2
(sin(|𝑥𝑖|𝑡) |0⟩ − sin (|𝑥𝑗|𝑡)|1⟩)⊗ |1⟩   (18) 

 

Measuring the ancilla bit with appropriate t, the complexity of constructing |𝜑⟩  with accuracy 𝜖  and 

(|𝑥𝑖|
2 + |𝑥𝑗|

2) is  𝑂(𝜖−1). We now perform a swap test on the ancilla alone with |𝜓⟩ and |𝜑⟩. Thus, the 

runtime complexity of calculating a single dot product 𝑥𝑖
𝑇𝑥𝑗  with QRAM is 𝑂(𝜖−1𝑙𝑜𝑔𝑁). A QRAM uses 𝑛 

qubits to address any quantum superposition of 𝑁 memory cells. It exponentially reduces the requirements 



   

for memory access and needs only 𝑂(𝑙𝑜𝑔𝑁) switches for retrieving the information from the register, where 

𝑁 =  2𝑛 is the feature vector dimension and 𝑛 is the number of qubits of address register in QRAM. 

 

Suppose, 𝐾𝑝𝑜𝑙𝑦(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥⃗𝑖). 𝜑(𝑥⃗𝑗) = (𝑥𝑖 , 𝑥𝑗)
𝑑  is the 𝑑𝑡ℎ  order polynomial kernel. The SVM 

classification can be performed in the higher dimensional space. In this case, each vector is mapped into a 𝑑-

times tensor product  |𝜑(𝑥⃗𝑖)⟩ ≡ |𝑥⃗𝑖⟩ ⊗ …⊗ |𝑥⃗𝑖⟩. The runtime complexity of this quantum polynomial kernel 

trick is 𝑂(𝑑𝑙𝑜𝑔𝑁/𝜖). Apart from the quantum polynomial kernel, we have also discussed the quantum 

Gaussian kernel in our recent work [14]. The runtime complexity of normalized quantum Gaussian kernel 

[14] is  ~ 𝑂[𝜖−1(1 + 𝑒)𝑙𝑜𝑔𝑀]~𝑂[𝜖−1𝑙𝑜𝑔𝑀]. 

 

3. CLASSICAL SUPPORT VECTOR CLUSTERING 

 

In [7] authors have discussed the support vector clustering (SVC). In the first phase, it defines the one-class 

support vector machine (SVM) to find the cluster boundaries. One class SVM problem is actually equivalent 

to finding a minimum region 𝑅, which encloses most of the input objects.  

 

For our discussion in this paper, at first, following a similar approach as in the SVM classification in the 

original formulation [7], we formulate the classical support vector clustering using the least squared support 

vector machine, as compared to the original implementation in [7]. Later in Section 4, we show how to 

formulate a quantum version of it. The implementation with a classical least squared SVM uses a classical 

kernel trick (with polynomial and/or Gaussian kernel function), whereas the original implementation in [7] 

used the classical Gaussian kernel. The kernel trick transforms the input objects into a higher dimensional 

space to handle the non-linear dataset. Using a kernel (polynomial or Gaussian) function also helps in forming 

tight contours in the higher dimensions. The support vectors surround the boundaries of these contours. We 

represent these contours as clusters. We modified the equation (11) to make it feasible for clustering, as 

follows: 

 

(0, 𝑦⃗𝑇)𝑇 = 𝐹(𝑏, 𝛼⃗𝑇)𝑇 ≈ 𝑓(𝑥⃗) = 𝑠𝑔𝑛 (∑ 𝛼𝑖𝐾(𝑥⃗𝑖 , 𝑥⃗) + 𝑏𝑥⃗𝑖∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 )     (19) 

 

where, 𝛼𝑖 > 0 corresponds to the support vectors and for rest of the points, 𝛼𝑖 = 0, and 𝐾 represents the kernel 

function. The objective here is to address a one-class SVM for the clustering implementation that finds a 

minimal region 𝑅, which encloses the input data objects.  By using the input data that has only single class, 

we construct a one-class SVM classifier from a generalized multiclass SVM. One class SVM deduces the 

properties of the single class cases and from these properties predict which examples are unlike the given class 

examples. A positive value outcome of 𝑓(𝑥⃗) implies that 𝑥⃗ falls within the dense subspace 𝑅, whereas the 

negative value outcome of the decision function (19) implies a sparsely populated region. The objects for 

which  𝑓(𝑥⃗) < 0 are known as bounded support vectors (BSV), and support vectors are those objects which 

fall on the contour line. Inside a contour, we have the clustered objects for that specific contour. 

 

In the second phase, the one-class SVM formulation helps in framing the clustering implementation by 

computing an adjacency matrix 𝐴 of input objects. In this formulation, 𝐴𝑖𝑗 = 1 if 𝑥⃗𝑖  and 𝑥⃗𝑗  are enclosed 

within the same contour, and 0 otherwise. Equation (19) helps in determining whether  𝑥⃗𝑖 and 𝑥⃗𝑗  lie within 

the same contour or not. In this case, Equation (19) determines the decision for all the objects on the line that 

connects  𝑥⃗𝑖 and 𝑥⃗𝑗 , and if the Equation (19) results in all positive values, then that all these objects are within 

the same contour and bounded by the support vectors 𝑥⃗𝑖 and 𝑥⃗𝑗 .  Each contour is then considered as a separate 

cluster. Algorithm 1 [7] determines the number of clusters and the objects in the clusters: 

 

ALGORITHM 1: Cluster Finding Algorithm 

clusterFinding(𝐀): 



 

  

1. Initialize 

1.1 All the vertices 𝑥⃗𝑖  in 𝐴 as not marked,  

1.2 A variable 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 =  1,  

1.3 A one-dimensional dynamic array    𝑠𝑡𝑜𝑟𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑠  

1.4 A multidimensional dynamic array clusteredObjects 

2. Loop the following for every vertex 𝑥⃗𝑖 in 𝐴 

2.1 If 𝑥⃗𝑖  is not marked, then call depthFirstSearch(𝑥⃗𝑖) 

2.2 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 =  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + 1 

2.3 Append storeClusterObjects to clusteredObjects 

3. Return clusterCount, clusteredObjects 

 

The Algorithm 1, clusterFinding, returns the number of clusters, clusterCount, and the cluster objects linked 

with each cluster, clusteredObjects. 

 

ALGORITHM 2: Depth First Search Algorithm 

depthFirstSearch(𝐱⃗𝐢): 

1. Mark 𝑥⃗𝑖 

2. 𝑠𝑡𝑜𝑟𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑠 =   𝑥⃗𝑖 

3. Search an adjacency of 𝑥⃗𝑖   , say 𝑥⃗𝑗 , that has not yet been visited using a classical search algorithm 

4. Loop the following for every adjacency 𝑥⃗𝑗  of 𝑥⃗𝑖. 

4.1 If  𝑥⃗𝑗  is not marked, then call depthFirstSearch(𝑥⃗𝑗) 

5. Return storeClusterObjects 

 

The Algorithm 2, depthFirstSearch, is the depth-first-search (DFS) algorithm. With Gaussian kernel 

formulation, 𝐾 = 𝑒−𝜎‖𝑥⃗𝑖−𝑥⃗𝑗‖
2

, let us suppose that 𝜎 is the scale parameter of the Gaussian kernel and 𝛾 is the 

soft margin constant (Please refer Section 2.1 for more details on soft margin constant). These two parameters 

govern the contours in the cluster data space. The parameter 𝛾 controls the number of outliers in the data 

space, and variations in the value of 𝜎 may vary the number of clusters in the data space. 

 

4. QUANTUM SUPPORT VECTOR CLUSTERING 

 

The quantum support vector clustering implementation has two phases, similar to the case in the classical 

counterpart and described in the previous section. In the first phase, we formulate the cluster boundaries with 

a one-class quantum least square support vector machine and, subsequently, in the second phase, we identify 

the number of clusters and the objects within the clusters.  

 

4.1 Cluster Boundaries 

 

Data preparation and pre-processing in a quantum setup is a complex task. We address the task of 

representation of classical data into quantum form by using a quantum random access memory (QRAM) [27]. 

Quantum random access memory allows us to perform memory access in coherent quantum superposition 

access, and thus the data can be accessed in a quantum parallel way [27] [21]. With the similar context of 

classical random access memory, the QRAM is composed of the input register (address register) and the 

output register, but in qubits instead of bits form, and the memory array can be in quantum or classical form 

based on the specific use cases. In our quantum setting, all the data inputs are in quantum superposition. The 

address register AR in QRAM contains a superposition of addresses  ∑ 𝜓𝑙|𝑙⟩𝐴𝑅𝑙 , and by correlating with the 

address register, the QRAM returns the data register DR, which contains a superposition of output data: 

 

 ∑ 𝜓𝑙|𝑙⟩𝐴𝑅𝑙

𝑄𝑅𝐴𝑀
→   ∑ 𝜓𝑙|𝑙⟩𝐴𝑅|𝐷𝑙⟩𝐷𝑅𝑙 ,               (20) 



   

 

where the 𝑙𝑡ℎ memory cell contains 𝐷𝑙. 

 

The quantum support vector machine [13] [1] is a quantum classification algorithm that works based on the 

postulates of quantum mechanics. In our construction, we first need a one-class quantum SVM. We articulate 

a quantum SVM formulation into a one-class quantum SVM formulation, which is a straightforward process 

with a simple trick. We just use the data for which all the input objects have the same labels. Suppose, |𝑥⃗𝑖⟩  

and |𝑥⃗𝑗⟩ are two input objects. We determine whether the |𝑥⃗𝑖⟩  and |𝑥⃗𝑗⟩  lie within the same contour, by 

classifying all the objects using the following quantum SVM decision function [13] [14], 

 

|𝑦⃗𝑜𝑛𝑒_𝑐𝑙𝑎𝑠𝑠_𝑐𝑎𝑠𝑒⟩ =  𝐹̂𝑜𝑛𝑒_𝑐𝑙𝑎𝑠𝑠_𝑐𝑎𝑠𝑒(|𝑏𝑜𝑛𝑒_𝑐𝑙𝑎𝑠𝑠_𝑐𝑎𝑠𝑒 , 𝛼⃗𝑜𝑛𝑒_𝑐𝑙𝑎𝑠𝑠_𝑐𝑎𝑠𝑒⟩),     (21) 

 

on the line that connects |𝑥⃗𝑖⟩  and |𝑥⃗𝑗⟩. The +1 classification for all the objects guarantees that |𝑥⃗𝑖⟩  and |𝑥⃗𝑗⟩  

are in the same contour. Here, the equation (21) is the simplified one-class representation of the general 

quantum SVM (12) & (13). Using the quantum equation (21), we can similarly perform the operation we do 

with equation (19) (i.e, the classical case). In this quantum space, we obtained the SVM parameters 𝛼⃗ and 𝑏 

using quantum mechanical postulates, where, 𝛼⃗ > 0 corresponds to the support vectors and for rest of the 

points, 𝛼⃗ = 0. 

 

4.2 Cluster Identification  

After formulating the quantum one-class support vector machine, our next task is to assign the cluster 

boundaries. The single class quantum SVM can be easily extended to a clustering scheme by computing an 

adjacency matrix 𝐴 for the given cluster data, where:      

𝐴𝑖𝑗 = {
1;  if |x⃗⃗i⟩ and |x⃗⃗j⟩ are enclosed within the same contour.

0;  otherwise.  
    (22) 

By classifying all the points in the line that connects |𝑥⃗𝑖⟩ and |𝑥⃗𝑗⟩, we determine whether |𝑥⃗𝑖⟩ and |𝑥⃗𝑗⟩ lie 

within the same contour. All the objects within a specific contour form a separate cluster. Technically, the 

number of contours means the number of clusters. In the graph induced by the matrix 𝐴𝑖𝑗, one can detect the 

connected components. The number of clusters is determined by the number of graphs induced by the 

connected components in 𝐴𝑖𝑗. Let us discuss finding the number of connected components in 𝐴𝑖𝑗. For this 

purpose, we have performed a depth-first-search (DFS) in a quantum way [28]. Here, 𝐴𝑖𝑗 is an undirected 

graph matrix. The following Algorithm 3 determines the number of clusters and associated objects in the 

clusters: 

ALGORITHM 3: Quantum Cluster Finding Algorithm 

quantumClusterFinding(𝐀): 

1. Initialize 

1.1 All the vertices |𝑥⃗𝑖⟩ in 𝐴 as not marked, 

1.2 A variable 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 =  1,  

1.3 A one-dimensional dynamic array 𝑠𝑡𝑜𝑟𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑠  

1.4 A multidimensional dynamic array clusteredObjects 

2. Loop the following for every vertex |𝑥⃗𝑖⟩ in 𝐴 

2.1 If |𝑥⃗𝑖⟩ is not marked, then call quantumDepthFirstSearch(|𝑥⃗𝑖⟩) 

2.2 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 =  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + 1 

2.3 Append storeClusterObjects to clusteredObjects 

3. Return clusterCount, clusteredObjects 

 



 

  

ALGORITHM 4: Quantum Depth First Search Algorithm 

quantumDepthFirstSearch(𝐱𝐢): 

1. Mark |𝑥⃗𝑖⟩ 

2. 𝑠𝑡𝑜𝑟𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑠 =   |𝑥⃗𝑖⟩ 

3. Search an adjacency of |𝑥⃗𝑖⟩  , say |𝑥⃗𝑗⟩ , that has not yet been visited using a quantum search algorithm 

(Grover’s quantum search in this case) 

4. Loop the following for every adjacency |𝑥⃗𝑗⟩  of |𝑥⃗𝑖⟩. 

4.1 If  |𝑥⃗𝑗⟩ is not marked, then call quantumDepthFirstSearch(|𝑥⃗𝑗⟩) 

5. Return storeClusterObjects 

  

Algorithm 3, quantumClusterFinding, returns the number of clusters, clusterCount, and the cluster objects 

associated with each cluster, clusteredObjects. The Algorithm 4, quantumDepthFirstSearch, is the 

quantum version of depth-first-search (QDFS) algorithm.   

 

With the quantum version of a Gaussian kernel, the contours in the cluster data space are governed by two 

parameters, 𝜎, and 𝜍, where 𝜎 is the scale parameter of quantum Gaussian kernel and 𝜍 is the soft margin 

constant. The shape/number of the boundaries in the data space varies with the changes in 𝜎. Increasing the 

value of 𝜎 may result in increasing the number of clusters in the data space. The parameter 𝜍 controls the 

number of outliers in the data space. 

 

5. COMPUTATIONAL COMPLEXITY AND ERROR ANALYSIS 

 

At first, we analyze the complexity of the classical implementation with the least square SVM. We discuss 

the complexity of the whole approach for finding the clustering boundaries and the clustering identification 

phases, respectively. We start the discussion with the clustering boundary phase, in the case of the least 

square SVM, quadratic programming is circumvented, and the parameters are evaluated from the solution of 

a system of linear equations. In classical settings [29], the algorithm converges after approximately 𝑂(𝑀2) 

kernel evaluations. The complexity of the complete algorithm is 𝑂(𝑀2𝑁), which is a polynomial-time 

complexity, and where the number of support vectors is 𝑂(1). In the clustering identification phase, the 

complexity of finding the number of clusters in the adjacency matrix 𝐴 with depth-first-search is 𝑂(𝑀2). 

  

In the quantum SVM paradigm, the performance gain in the dimensional factor 𝑁 is due to the fast quantum 

evaluation of inner products. We achieve the performance advantage in the number of training examples 𝑀 

by re-expressing the SVM formulation as an approximate least square formulation, which allows us to employ 

the matrix inversion algorithm [13] and using a technique for the non-sparse matrices exponentiation. 

Assuming, 𝜖𝐾 is the smallest eigenvalue measured and 𝜖 is the accuracy, the training stage error dependence 

is (𝑝𝑜𝑙𝑦(𝜖𝐾
−1, 𝜖−1)) [11] [12]. When a low-rank approximation is appropriate, the quantum SVM runs on 

the complete training set in logarithmic runtime. 

 

In the quantum setting for support vector clustering, we initially discuss the complexity of finding cluster 

boundaries. For 𝑁 dimensional 𝑀 cluster data points, the least square quantum SVM classification training 

with a quantum linear kernel takes 𝑂(𝑙𝑜𝑔𝑁𝑀) runtime complexity. When implemented with the quantum 

Gaussian kernel, the runtime complexity of the kernel implementation is approximated 𝑂[𝜖−1(1 + 𝑒)𝑙𝑜𝑔𝑁], 

where 𝜖 is the maximal error in the context. And, with the quantum 𝑑-level polynomial kernel, the runtime 

complexity of the quantum support vector machine is 𝑂(𝑑𝜖−1𝑙𝑜𝑔𝑁). 

 

The runtime complexity of the clustering identification phase considers two runtime contributions. During 

the quantum search [29] in quantum DFS, the search will fail once [30], which includes a runtime complexity 

of 𝑂(√𝑀3𝑙𝑜𝑔2𝑀). Now, we consider the runtime complexity of the successful search [31] of the element, 

which is also 𝑂(√𝑀3𝑙𝑜𝑔2𝑀). Therefore, the runtime complexity of the clustering identification phase is 



   

(√𝑀3𝑙𝑜𝑔2𝑀) with quantum implementation. In this quantum setting, 𝜖𝑔
−1 is polynomial in the number of 

vertices of the adjacency matrix, where we suppose that the anticipated probability of failure is 𝜖𝑔 [28].  

 

When we transfer the classical data onto the quantum form, the classical data with 𝑁 dimensional complex 

form can be mapped onto a quantum state over 𝑙𝑜𝑔2𝑁 qubits, the runtime computational complexity of this 

mapping is 𝑂 (𝑙𝑜𝑔2𝑁). Thus, QRAM takes only 𝑂 (𝑙𝑜𝑔2𝑁) steps to query the memory for reconstructing a 

state. This computational complexity adds extra 𝑂 (𝑙𝑜𝑔2𝑁)  factor to the overall complexity, when we 

orchestrate the support vector clustering algorithm in the quantum system. 𝑂 (𝑙𝑜𝑔2𝑁) is small to affect the 

overall complexity in quantum paradigm when compared to the overall complexity in the classical paradigm. 

 

We see that in both phases, i.e., for finding clustering boundaries and cluster identification, we achieved near 

exponential and quadratic performance gains, respectively. Therefore, the overall runtime analysis concludes 

that the proposed quantum version implementation of the support vector clustering is significantly faster than 

the classical implementation. 

 

6. SIMULATION BASED PRACTICAL STUDIES 

 

6.1 Practical Exploration 

 

Our proposed quantum support vector clustering approach shows significant speedup gain theoretically as 

compared to the classical counterpart, and the use of quantum version of SVM and Grover’s quantum search 

play the most vital role in this achievement. Fig.1 exhibits the runtime scaling between the classical and 

quantum SVM against the number of training examples (for simplicity assuming the dimension of the feature 

vector approximately equal to the number of training examples). Fig.2 shows the runtime scaling between 

the classical and quantum search against the number of inputs.  

 

 
 

Fig.1: Runtime comparison between classical SVM (𝑂(𝑀2𝑁) ≈ 𝑂(𝑀3)) vs quantum SVM (𝑂(𝑙𝑜𝑔𝑀𝑁)) 

against the number of training examples 

 



 

  

 
 

Fig.2: Runtime comparison between classical search (𝑂(𝑀)) vs Grover’s search (𝑂(√𝑀))  against the 

number of inputs 

 

We are here dealing with big data. The number of qubits required for implementing quantum SVM is directly 

proportional to the dimension of the feature vector. Therefore, for 𝑁 dimensional feature vectors, we need 

the 𝑁 qubits quantum system. Although, in technical implementation, in special consideration, we can reduce 

the size of the feature dimension by using a dimension reducing technique - for example “Principal 

component analysis” (PCA), which is also an interesting topic to discuss for any advantage gain in overall 

accuracy against the less number of features. But here, we are talking about big data only. For example, an 

image of size 150 × 150 pixels requires 150 × 150 = 22,500 qubits system to process 22,500 features. 

Although we can reduce the number of feature vectors before feeding it into the SVM by using convolutional 

techniques, still we require very high volume-qubit quantum systems. At the present time, no quantum 

computer supports such a large number of qubits. In image processing, the image sizes may even vary from 

150 × 150 × 3 to 400 × 400 × 3 pixels (when taking into account the third color channel too). Apart from 

this, QRAM (Quantum random access memory) helps in mapping the classical 𝑁 dimensional feature vector 

over 𝑙𝑜𝑔2𝑁 qubits [27] too. 

 

For implementing the Grover’s search algorithm to search a marked item in the list of 𝑀 items, we need 

𝑙𝑜𝑔2𝑀  qubits system. So, for implementing the second part of our proposed quantum SVM clustering 

algorithm, we need at least a 𝑙𝑜𝑔2𝑀 qubits quantum system, where 𝑀 is the number of training samples  

 

For the demonstration purpose, to investigate our quantum SVM clustering approach in a simulated quantum 

computer, we examined the quantum SVM algorithm in the IBMQ [32] quantum simulator (with 

qasm_simulator). We use the QISKIT library [33] to implement the simulation environment. We used the 

Breast cancer dataset [34]. As we used a two qubits system, we have transformed the 30-dimensional space 

of the feature vectors to only two-dimensional space of feature vectors using PCA (principal component 

analysis). Here, we have to keep the dimension of the feature vectors equal to the number of qubits. The 

experimental results are presented in the below table Table 1. In a similar way, we can execute with more 

than two qubits quantum system. 

Table.1 

Models 

Simulation 

environment 

setup time 

(seconds) 

Quantum 

circuit building 

time (seconds) 

Training 

time 

(seconds) 

Prediction 

time 

(seconds) 

Test 

accuracy 

classical SVM 0 0 0.000993 00.001487 0.99 

qasm_simulator 00.007441 30 0.006000 0.0000600 0.90 



   

 

The above Table 1 illustrates that we are still far away from experiencing the true power of the quantum 

computer. The simulated environment is slow as compared to the classical one for training with the same 

data sets. Although we observed better performance during the prediction with quantum simulated 

environment. We tested with only 20 training examples and with 2 qubits setup for the analysis purpose. 

Further there is restriction on the maximum number of qubits in IBMQ, which is limited to 4, 5 and ~53 qubit 

systems, which are still very small scale quantum computers and hardly useful for state-of-the-art machine 

learning tasks). The experimental results are hoped to be near to the theoretical analysis when we will have 

more sophisticated quantum computer with much higher number of qubits. Similarly, Grover’s algorithm 

[35] can be implemented with three qubits with IBMQ, but will not have any practical use of it as the number 

of available qubits is too small.  

 

6.2 Implementation Inadequacy 

The QISKIT interface has a limitation of ~75 circuits support. This puts a restriction on the multiple iteration 

support for Grover’s search [36]. Although, the IBMQ group is working on high volume qubits systems (a 

recent one with ~53 qubits). But, as the number of qubits increases, it attracts more execution time and gate 

errors due to gate coupling, which may affect our algorithm’s performance in terms of overall accuracy. It 

will be interesting as a future investigation to measure the algorithm’s performance with every addition of 

the new qubits in IBM’s system. With the quantum simulator, it is possible to configure a coupling map equal 

to that of the IBMQ quantum computer.  However, in case of the physical qubits, each qubit may interact 

differently with other qubits and quantum gates, due to the limitation of the hardware and coupling map 

layout in the present quantum systems. Therefore, to test our algorithm with big data, we need a quantum 

computer with a very high volume of qubits (at least equal to the number of feature vectors) and with a very 

good error correction mechanism. Quantum decoherence is another factor, which needs to be addressed while 

designing a large quantum computer to support the proposed quantum algorithm which deals with big data. 

The effects of the decoherence increase as the number of qubits increases.  

 

7. CONCLUSIONS 

 

Clustering is used in an assortment of applications such as document clustering, market segmentation, and 

image segmentation, etc. The the idea is to get some evocative intuition of the structure of the data we're 

dealing with and group them based on thier similarities. The support vector clustering (SVC) is one of the 

most popular clustering method which is based on support vector machine. In the investigation in this paper, 

we have discussed on the theoretical grounds that the SVC implementation in the quantum paradigm exhibits 

better than quadratic speed up gain in overall performance as compared to the classical implementation. We 

have analyzed the quantum implementation of the support vector clustering method with both quantum 

Gaussian kernels as well as with quantum polynomial kernels, and have concluded that both implementations 

have shown substantial performance improvements in the overall runtime complexity as compared to the 

classical implementation. The Gaussian/polynomial kernels help in developing better contours in higher 

dimensions both in the classical implementation [37] as well as in the quantum version. Training of the one-

class SVM is also exponentially faster in its quantum version. During the clustering identification phase, we 

have used a quantum version of the depth-first search, which shows quadratic speed up gain as compared to 

the classical implementation of DFS. DFS is used to identify the number of clusters and the clustered objects, 

with the help of the adjacency matrix. In the proposed quantum version of support vector clustering approach, 

we have demonstrated significant quantum advantages on performance gains at multiple stages, i.e., the one 

class SVM formulation, the kernel formulation, and during the depth-first search with Grover’s search 

algorithm. We have also discussed the implementation possibilities at the present time with the IBMQ 

quantum computer and concluded that the implementation of our proposed quantum algorithm with big data 

requires a quantum computer with very high volume of qubits.  
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