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Abstract

In this paper we propose a quantum algorithm to determine the Tikhonov regularization parameter

and solve the ill-conditioned linear equations. For regularized least squares problem with a fixed

regularization parameter, we use the HHL algorithm and work on an extended matrix with smaller

condition number. For the determination of the regularization parameter, we combine the classical L-

curve and GCV function, and design quantum algorithms to compute the norms of regularized solution

and the corresponding residual in parallel and locate the best regularization parameter by Grover’s

search. The quantum algorithm can achieve a quadratic speedup in the number of regularization

parameters and an exponential speedup in the dimension of problem size.

Keywords. HHL algorithm, Grover’s search, Tikhonov regularization, TSVD, Regularization pa-
rameter, L-curve, GCV.

1 Introduction

We consider an ill-conditioned linear system Ax = b that arises from the discretization of some linear
inverse problem or of the linearized system of some nonlinear case [1, 7, 12], where the coefficient matrix
A is of size m × n and the right hand side b is obtained from measurement data. For the finite element
discretization, A is also a large sparse matrix. For such ill-conditioned problem, the condition number
κ(A) = ‖A+‖ · ‖A‖ is large, where A+ is the Moore-Penrose inverse. Thus some regularization techniques
are needed in order to achieve a meaningful solution, since the solution is very sensitive and can be easily
contaminated by the perturbation in the measurement data. Tikhonov regularization is one of the most
popular and effective techniques, which converts the original linear system into the following regularized
least squares problem (LSP)

min
x

{‖Ax− b‖2 + µ2‖x‖2}, (1)

where constant µ is the so-called regularization parameter [22]. By introducing the regularization pa-
rameter µ, one can make a comprise between the sensitivity of the problem and the perturbation of the
measured data and thus greatly reduce the effect caused by the contamination of the noise in the data.
In statistics the problem (1) is the well-known ridge regression problem, and µ is also called the ridge
parameter. The Tikhonov regularization can be of the following more general form [27]

min
x

‖Ax− b‖2 + µ2‖Lx‖2,
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where the matrix L arises from the discrete approximation to some differential operator, for example, the
discrete Laplacian or gradient operator.

The LSP (1) can be solved by the singular value decomposition (SVD). Suppose that we have the
SVD of matrix A ∈ Rm×n(m ≥ n), and it reads A = UΣV †, where U = (u1, · · · , um), V = (v1, · · · , vn)
are orthonormal matrices, and Σ = diag(σ1, · · · , σn) ∈ Rm×n with σi (i = 1, 2, · · · , n) being the singular
values. Then the solution of (1), i.e., the Tikhonov regularized solution xµ, can be expressed as

xµ =

n∑

i=1

fi
u†ib

σi
vi, (2)

where fi = σ2
i /(σ

2
i + µ2) is the Tikhonov filter factor [12]. For the case where the matrix A arises from

the discretization of some compact operator, it has singular values of quite small magnitude. One can
clearly see the necessity for introducing the regularization term in (1).

Another closely related popular regularization method is the truncated SVD method (TSVD), where
just the largest k singular values are kept while the other small ones are neglected. Using the resulting
best low rank approximation of A, the TSVD regularized solution xk is given by

xk =
k∑

i=1

u†ib

σi
vi, (3)

where k acts as the truncation parameter and is chosen such that the noise-dominated small singular
values are discarded. From another viewpoint, (2) can be reduced to the TSVD solution (3) by replacing
the filter factors fi in (2) by 0’s and 1’s appropriately.

The success of the regularized solution highly depends on the choice of regularization parameter µ or
k, which is our focus in this paper. There are several popular techniques in the literature to determine
effective regularization parameters. When the noise level is unknown, we may use some heuristic methods,
such as the L-curve method [11, 13], the generalized cross-validation (GCV) function [9], the quasi-
optimality criterion, and so on. When the noise level is known, the discrepancy principle, the monotone
error rule, and the balancing principle can be applied (See [26] and the references therein). In the
following, we introduce the amplitude estimation in Section 2, which will be used for norm estimate in
the choice of regularization parameter. We consider the quantum regularized LS with a fixed parameter
in Section 3, which is a preparation for the algorithm with variable parameters. Finally we focus on
the regularization parameter choice in Section 4. Classically, we choose a range of parameters µ. For
each parameter µ, we solve the problem (1) and obtain the corresponding solution xµ. From such a
series of solutions xµ, we take a proper strategy to locate the possible best regularization parameter.
The regularization parameter estimate is critical and very time consuming. In this section we propose a
quantum parallel procedure to speed up the parameter estimate.

2 Amplitude estimation and its generalization

An technique we will apply to find the best regularization parameter is the amplitude estimation, which
was proposed in [2] as a byproduct of quantum phase estimation (QPE) and Grover’s algorithm. In the
following, we first briefly review this quantum algorithm. Then, we extend it into a more general form
that can estimate amplitudes in parallel.

Let
|φ〉 = U |0〉⊗k = cos θ|0〉|u〉+ sin θ|1〉|v〉 (4)

be a quantum state, where U is a unitary operator that can be implemented in time O(T ). In the following
we will show how to estimate θ in a quantum computer to accuracy ǫ with high success probability at
least 1− δ.

Let Z be the 2-dimensional Pauli-Z matrix that maps |0〉 to |0〉 and |1〉 to −|1〉. Denote

G = (2|φ〉〈φ| − I)(Z ⊗ I) = U(2|0〉⊗k〈0|⊗k − I)U †(Z ⊗ I),
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which is similar to the rotation used in Grover’s algorithm. We can check that

G =

(
cos 2θ − sin 2θ

sin 2θ cos 2θ

)

in the space spanned by {|0〉|u〉, |1〉|v〉}. The eigenvalues of G are e∓i2θ and the corresponding eigenvectors
are |w±〉 = 1√

2
(|0〉|u〉 ± i|1〉|v〉).

To apply QPE, we choose the initial state as |0〉⊗n|φ〉, where n = O(log 1/δǫ). It can be rewritten as

|0〉⊗n|φ〉 = 1√
2
|0〉⊗n(eiθ|w−〉+ e−iθ|w+〉).

By QPE [18], we obtain the following state

1√
2
(eiθ|y〉|w−〉+ e−iθ| − y〉|w+〉), (5)

in time O(T/ǫδ), where y ∈ Z2n satisfies |θ − yπ/2n| ≤ ǫ. Here we ignored the circuit complexity
to implement the Hadamard transformation and the quantum Fourier transform in QPE, which equals
O(n2) = O((log 1/δǫ)2). Performing a measurement on (5), we get an ǫ-approximate of θ or −θ with
probability at least 1− δ. From the approximation of ±θ, we can estimate the probabilities | sin θ|2 and
| cos θ|2 efficiently. Generally, δ is chosen as a small constant and so can be ignored in the complexity
analysis. The above is the main idea of amplitude estimation.

To further apply the information of θ to solve other problems, such as the finding of the best regular-
ization parameter studied in this paper, instead of performing measurement at (5), the following quantum
state is more useful

|0〉⊗n|φ〉|f(cos yπ/2n)〉, (6)

where f is a function defined in C such that Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 is efficiently implemented.
The quantum state (6) is obtained by adding a register at (5) to store f(cos yπ/2n) and undoing the
QPE. If f is an elementary function, such as polynomial or cosine function, then Uf can be efficiently
implemented in a quantum computer [20]. All the functions we encountered in this paper are elementary,
so in the following, we always assume that Uf is available. For simplicity, we ignore the term |0〉⊗n in
(6). Therefore, we have

Proposition 1 Let U be a unitary operator such that |φ〉 = U |0〉⊗k = cos θ|0〉|u〉 + sin θ|1〉|v〉. Assume
that U can be implemented in time O(T ) in quantum computer. Let f be a complex function, then the
following unitary transformation

|φ〉|0〉 7→ |φ〉|f(cos θ̃)〉 (7)

can be achieved in time O(T/ǫ), where |θ − θ̃| ≤ ǫ.

The unitary procedure (7) can be implemented in parallel due to quantum superposition and paral-
lelism as the following corollary states.

Corollary 1 Let U1, . . . , Up be p unitary operators that can be prepared in time O(T ) in quantum com-
puter. Assume that |φj〉 = Uj|0〉⊗k = cos θj |0〉|u〉 + sin θj |1〉|v〉 for all j. Let

∑p
j=1 αj |j〉 be a given

quantum state and f1, . . . , fp be p complex functions. Then the following unitary transformation

p∑

j=1

αj |j〉|φj〉|0〉 7→
p∑

j=1

αj |j〉|φj〉|fj(cos θ̃j)〉 (8)

can be achieved in time O(T/ǫ), where |θj − θ̃j | ≤ ǫ.
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Combining Corollary 1 and quantum minimum finding algorithm [6], if αj = 1/
√
p for all j in (8),

then we can find j0 = argminj fj(cos θj) in time O(
√
pT/ǫ). The algorithm is a direct modification of

[6].
Quantum minimum finding algorithm [6]:

1. Choose threshold index 1 ≤ y ≤ p by performing a measurement at (8).

2. Repeat the following and interrupt it when the total running time is more than 22.5
√
p+1.4(log p)2.

(a) Initialize the memory as 1√
p

∑p
j=1 |j〉|φj〉|fj(cos θ̃j)〉. Mark every item j for which fj(cos θ̃j) <

fy(cos θ̃y).

(b) Apply the amplitude amplification to improve the probability of marked items.

(c) Observe the first register: let y′ be the outcome. If fy′(cos θ̃y′) < fy(cos θ̃y), then set y′ to be
the new threshold index y.

3. Return the index y.

Corollary 2 Let U1, . . . , Up be p unitary operators that can be prepared in time O(T ) in quantum com-
puter, and let f1, . . . , fp be p complex functions. Assume that |φj〉 = Uj |0〉⊗k = cos θj |0〉|u〉+ sin θj |1〉|v〉
for all j, and |θj − θ̃j | ≤ ǫ. Then we can find j0 = argminj fj(cos θj) in time O(

√
pT/ǫ).

3 Quantum regularized LS Algorithm

For the LSP (1), we need a solver for a system of linear equations. There exist several methods that can
be used to solve linear system in quantum computer, such as HHL algorithm [14], SVE [24], the blocked-
encoding framework [4] and some extensions. All these methods are affected by the condition number
of the linear systems. However, solving linear system is not the main objective of this paper, and we
only focus on the HHL algorithm to solve linear systems, even though some other approaches have better
dependence on the condition number and show better efficiency. The HHL algorithm, the first quantum
linear solver proposed by Harrow, Hassidim and Lloyd [14] in 2009, solves the linear system Ax = b, or

equivalently

(
0 A
A† 0

)(
0
x

)
=

(
b
0

)
. This algorithm outputs a quantum state |x〉 proportional to

∑n
k=1 xk|k〉. We can get the expectation value of a certain operator M associated with x, i.e., x†Mx, by

swap test [3]. Similarly, given another quantum state |c〉 = ∑n
k=1 ck|k〉, one can obtain an estimate of∑n

k=1 ckxk efficiently.
Actually the HHL algorithm finds the least squares solution of the problem minx ‖Ax− b‖. That is,

the HHL algorithm solves the linear system A†Ax = A†b instead of the original one Ax = b. So the
HHL algorithm can be directly applied to the LSP. The quantum algorithm given in [25] seems to be
the first application of HHL algorithm for the LSP. Other quantum algorithms to solve linear regression
can be found in [4, 15, 21, 23]. The ordinary LSP is a special case of regularized LSP (1) with the
regularization parameter µ = 0. Solving the regularized LSP with a fixed regularization parameter µ has
been considered in [16], based on the SVD of A.

It is easy to verify that the LSP (1) is equivalent to the following form

min
x

∥∥∥∥
(

A
µI

)
x−

(
b
0

)∥∥∥∥
2

. (9)

Our LSP solver starts from the SVD of the extended matrix Aµ :=

(
A
µI

)
. Denote the condition

numbers of A and Aµ as κ and κµ, respectively. Using the SVD of A, we can easily derive that the

eigenvalues of A†
µAµ are σ2

i +µ2 (i = 1, · · · , n), so the singular values of Aµ are
√
σ2
i + µ2 (i = 1, · · · , n).
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Let σmax be the largest singular value and σmin the smallest nonzero singular value of A, respectively. If
A is of full column rank, then σn = σmin 6= 0, and

κµ =

√
σ2
max + µ2

σ2
n + µ2

=

√
κ2 + (µ/σmin)2

1 + (µ/σmin)2
. (10)

If A is rank deficient or m < n, then σn = 0, and

κµ =

√
σ2
max + µ2

µ2
=

√

κ2
σ2
min

µ2
+ 1. (11)

For the ill-conditioned case where κ ≫ 1, the regularization parameter µ is chosen such that µ ≫ σmin.
Then generally we have κµ ≪ κ. So we may have a much smaller condition number for solving the LSP
(1) based on Aµ, rather than that based on A.

The minimization problem (9) can be solved by applying the HHL algorithm to the following linear
system (

0 Aµ

A†
µ 0

)(
0
x

)
=

(
b
0

)
. (12)

Denote Ãµ =

(
0 Aµ

A†
µ 0

)
and b̃ =

(
b
0

)
. Since

Ãµ =




0 0 A
0 0 µI
A† µI 0



 =




0 0 A
0 0 0
A† 0 0



+




0 0 0
0 0 µI
0 µI 0



 ,

The Hamiltonian simulation of e−itÃµ is equivalently efficient as

(
0 A
A† 0

)
in HHL algorithm [5]. So

the assumption about Hamiltonian simulation to solve (12) is the same as the HHL algorithm. In the
following, we always assume that the Hamiltonian simulation of Aµ is efficient.

Assume that the SVD of Ãµ =
∑

j σ̃j |ũj〉〈ũj |, where σ̃j is the singular value of Ãµ, and the smallest

nonzero one is represented by σ̃min. We formally rewrite |b̃〉 =∑j β̃j |ũj〉. Then using a similar procedure
to the HHL algorithm, we can obtain

|Φ〉 =
∑

j

β̃j |ũj〉
[
C̃σ̃−1

j |0〉+
√
1− C̃2σ̃−2

j |1〉
]
= C̃‖xµ‖|xµ〉|0〉+ P1|φ1〉|1〉, (13)

where C̃ = σ̃min, and |φ1〉 is proportional to
∑

j β̃j

√
1− C̃2σ̃−2

j |ũj〉 with amplitude P1. The complexity

to get this quantum state is O(κµ(logn)/ǫ). The derivation of this complexity is the same as the HHL
algorithm. However, HHL algorithm has a quadratic dependence on the condition number, which arises
from two resources. One is for estimating σ̃−1

j and the other one is from the success probability. Here,
we do not perform any measurement, so the complexity is linear in the condition number. We will see in
the next section that the quantum state (13) is suffices to find the best regularization parameter.

4 Choice of regularization parameter

A key issue for the success of the Tikhonov regularization is how to determine a reasonable regularization
parameter µ. Here we consider the quantum implementations of two typical heuristic methods, which
use the L-curve and the GCV function respectively. In L-curve or GCV function, we need to estimate
the norm of the solution ‖xµ‖ and the norm of the residual ‖Axµ − b‖.

In (13), by amplitude estimation (i.e., Proposition 1), we can estimate the amplitude of |0〉, which
equals C̃‖xµ‖. By Proposition 1, we can obtain an α such that |C̃‖xµ‖−α| ≤ ǫ0, that is, |‖xµ‖−α/C̃| ≤

5



ǫ0/C̃. This costs O(κµ(log n)/ǫǫ0). To make the error small in size ǫ, we choose ǫ0 = C̃ǫ. Finally, the
complexity to get an ǫ-approximation of ‖xµ‖ is

O(κµ(log n)/ǫ
2σ̃min). (14)

Next, we consider how to estimate the norm ‖Axµ − b‖. As a generalization of HHL algorithm, the
quantum state |xµ〉 given in (13) can be multiplied by A. And we will get the following quantum state

|ψ〉 = C‖xµ‖A|xµ〉|0〉+ P2|φ2〉|1〉, (15)

where C = C̃/σmax, and |φ2〉 is some garbage state with amplitude P2. To estimate ‖Axµ − b‖ by
amplitude estimation, we should prepare the quantum state proportional to ‖xµ‖A|xµ〉 − |b〉. It can be
obtained in the following steps.

Step 1, prepare the initial state as

1√
2
(|ψ〉|0〉 − |b, 0〉|1〉) |0〉. (16)

Step 2, set t = min{1, C}. Here we do not need t equals min{1, C} exactly, a low bound of min{1, C}
still works. Apply a control transformation to (16) such that, if the second register is |0〉, then change
the last qubit |0〉 into tC−1|0〉+

√
1− t2C−1|1〉. If the second register is |1〉, then change the last qubit

|0〉 into t|0〉+
√
1− t2|1〉. So we get

1√
2
|ψ〉|0〉

[
tC−1|0〉+

√
1− t2C−1|1〉

]
− 1√

2
|b, 0〉|1〉

[
t|0〉+

√
1− t2|1〉

]
. (17)

Step 3, apply the Hadamard gate to the second register of (17) to get

1√
2
|ψ〉|+〉

[
tC−1|0〉+

√
1− t2C−1|1〉

]
− 1√

2
|b, 0〉|−〉

[
t|0〉+

√
1− t2|1〉

]

=
t

2
(‖xµ‖A|xµ〉 − |b〉)|0, 0, 0〉+ orthogonal parts.

(18)

To get the above quantum state, it only costs O(κµ(logn)/ǫ) that comes from step 1. By Proposition 1,
we will get a value β in time O(κµ(logn)/ǫǫ1), such that

∣∣ t
2‖‖xµ‖A|xµ〉 − |b〉‖ − β

∣∣ ≤ ǫ1. Similarly, to
get an ǫ-approximate of ‖‖xµ‖A|xµ〉 − |b〉‖, we choose ǫ1 = ǫt/2. By the definition of t and C, we have
ǫ1 ≥ ǫC/2 = ǫσ̃min/2σmax. Finally, the complexity to get an ǫ-approximation of ‖‖xµ‖A|xµ〉 − |b〉‖ reads

O(κµ(log n)σmax/ǫ
2σ̃min). (19)

Note that σ̃j =
√
σ2
j + µ2 and generally µ≪ 1. Since the singular values ofA contain small magnitude,

we just assume that 1/κ ≤ σj < 1 for all j. Thus, max σ̃j = O(1), which implies 1/σ̃min ≈ κµ. Concluding
the above analysis, we have

Theorem 1 Assume that the Hamiltonian simulation of

(
0 A
A† 0

)
is efficient, xµ is the solution of the

regularized least squares system (1). Then we can compute the ǫ-approximations of ‖xµ‖ and ‖Axµ − b‖
in time O(κ2µ(logn)/ǫ

2), where κµ is the condition number of

(
A
µI

)
.

4.1 L-Curve

The so-called L-curve method uses a plot of the norm of the regularized solution versus the corresponding
residual norm, i.e., the plot of (‖Axµ−b‖, ‖xµ‖) over a range of µ. It gives an insight into the regularizing
properties of the underlying regularization method, and helps to choose an appropriate regularization
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parameter. To be precisely, we set a series of parameters, for example, µj = ρj(j = 1, . . . , p), ρ = 0.9, and
plot ‖Axµ − b‖ vs. ‖xµ‖. If there is a corner on the L-curve, one can take the corresponding parameter
µ as the desired regularization parameter.

Computing all the values of (‖Axµj
− b‖, ‖xµj

‖) for j = 1, . . . , p, will costs O(p(maxj κµj
)2(log n)/ǫ2)

by Theorem 1. We use these p pairs of data to plot the L-curve and locate its corner. Compared with
classical method, it achieves an exponential speedup at n.

By quantum minimum finding algorithm, i.e., Corollary 2, we can further achieve a quadratic speedup
at p. Now we consider the case that p is large. In this case, the appropriate regularization parameter
is one of µj , and we can find the best regularization parameter by quantum minimum finding algorithm
and computing (‖Axµj

− b‖, ‖xµj
‖) in parallel. This is achieved in the following steps.

Step 1, prepare the state

1√
p

p∑

j=1

|j〉.

Step 2, denote the quantum state (13) and (18) for µj as |Φj〉 and |Ψj〉 respectively. Then prepare
them in parallel by control operation, so we have

1√
p

p∑

j=1

|j〉|Φj〉|Ψj〉.

Step 3, apply (8) to estimate ‖xµj
‖ and ‖Axµj

− b‖ in parallel, which yields

1√
p

p∑

j=1

|j〉|Φj〉|Ψj〉|‖xµj
‖, ‖Axµj

− b‖〉. (20)

The function used to compute ‖xµj
‖ from |Φj〉 is f(x) = x/C̃, and the function used to compute ‖Axµj

−b‖
from |Ψj〉 is f(x) = 2x/t. Both are linear functions, so the circuits to implement their oracles are efficient.

Step 4, apply quantum minimum finding algorithm to find the best µj . In L-curve, the corner
corresponds to the optimal regularization parameter. For most cases, the point (‖Axµj

− b‖, ‖xµj
‖)

with minimal ‖xµj
‖2 + ‖Axµj

− b‖2 is the corner. Otherwise, a suitable translation is needed. With
the quantum state (20), we can apply the quantum minimum finding algorithm to find the minimum of
{‖xµj

‖2 + ‖Axµj
− b‖2 : j = 1, . . . , p} and so find the best µj .

It is obvious that step 1 only costs O(log p). From the construction of (13) and (18), step 2 costs
O((maxj κµj

)(log n)/ǫ). In step 3, the amplitude estimation is accomplished in parallel, so by Corollary
1 and Theorem 1, this step costs O((maxj κµj

)2(logn)/ǫ2). Finally, in step 4, apply quantum minimum
finding algorithm to find the best µj can achieve a quadratic speedup at p. So the complexity of the
above procedure is O(

√
p(maxj κµj

)2(lognp)/ǫ2).

4.2 GCV function

The generalized cross-validation (GCV) function [9] is a choice rule that determines the regularization
parameter by minimizing the GCV function

G(µ) =
‖(I −A(A†A+ µ2I)−1A†)b‖2
[Tr(I −A(A†A+ µ2I)−1A†)]2

=
‖Axµ − b‖2

[m− n+
∑n

i=1 µ
2/(σ2

i + µ2)]2
. (21)

Precisely speaking, we choose a series of regularization parameters µj (j = 1, · · · , p). For each parameter
µj , we solve the LSP (1) and compute the value G(µj). We then use these data to fit a function G(µ)
and seek the optimal parameter that minimizes the function, i.e., argminµG(µ). Different from L-
curve, another problem that we need to solve in computing the value of GCV function is the summation
g(µ) = µ2

∑n
i=1(σ

2
i + µ2)−1. Calculating such a summation is not easy in a quantum computer since σi

is unknown, and each measurement only returns one singular value of A. For most of practical problems,
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A is of low rank, so we can consider an approximate SVD to calculate the GCV function [26]. That is,
we can use a rank-r approximation of A and compute a partial summation

∑r
i=1(σ

2
i + µ2)−1 with the

first r largest singular values.
Let Ãµ = (ãij). By SVD and the low rank assumption, we have

|Ãµ〉 =
1

‖Ãµ‖F

∑

i,j

ãij |i, j〉 by definition

=
1

‖Ãµ‖F

r∑

i=1

σ̃i|ũi, ũi〉+
1

‖Ãµ‖F

n∑

i=r+1

σ̃i|ũi, ũi〉 by SVD

≈ 1

‖Ãµ‖F

r∑

i=1

σ̃i|ũi, ũi〉 by low rank assumption

Performing the QPE on exp(−iÃµ) with the initial state |Ãµ〉, we will obtain

1

‖Ãµ‖F

r∑

i=1

σ̃i|ũi, ũi〉|σ̃i〉 (22)

with high probability close to 1. Performing O(r) measurements to (22), we will obtain all the principal
singular values σ̃1, . . . , σ̃r. Equivalently we get the approximations of σ1, . . . , σr, since the singular values
of Ãµ satisfy σ̃2

i = σ2
i + µ2. The complexity of this procedure is O(r(log n)/ǫ). For simplicity, define

g(µ) =
∑r

i=1 µ
2/(σ2

i + µ2). Now, the evaluation of G(µj) reduces to the evaluation of ‖Axµj
− b‖2 and

g(µj). The former can be obtained by (8) and (18), and the latter can be achieved by an oracle to query
µj . The following procedure to find the best regularization parameter is similar to that of L-curve.

Step 1, prepare the initial state as

1√
p

p∑

j=1

|j〉|µj〉|Ψj〉,

where |Ψj〉 is the same as that in L-curve.
Step 2, apply (8) to estimate ‖Axµj

− b‖2 in parallel and an oracle to calculate g(µj). So we get

1√
p

p∑

j=1

|j〉|µj〉|g(µj)〉|Ψj〉|‖Axµj
− b‖2〉.

Step 3, apply an oracle to compute G(µj) =
‖Axµj

−b‖2

(m−n+g(µj))2
and store it in an ancilla qubit

1√
p

p∑

j=1

|j〉|µj〉|g(µj)〉|Ψj〉|‖Axµj
− b‖2〉|G(µj)〉.

Step 4, apply quantum minimum finding algorithm to find the (best) regularization parameter µj0

with j0 = argminj G(µj).
By quantum superposition and the procedure to construct |Ψj〉, step 1 costs O((maxj κµj

)(log np)/ǫ).
In step 2, the amplitude estimation is accomplished in parallel, so by Corollary 1 and Theorem 1, this
step costs O((maxj κµj

)2(lognp)/ǫ2). Step 3 is achieved by an efficient oracle. Finally, in step 4, the
quantum minimum finding algorithm costs O(

√
p(maxj κµj

)2(lognp)/ǫ2) to find the best regularization
parameter. Together with the complexity to calculate all principal singular values, the whole complexity
of the quantum algorithm to find the best regularization parameter based on GCV is O(r(log n)/ǫ +√
p(maxj κµj

)2(log np)/ǫ2). For low rank linear system, that is r = O(poly logn), then this result is the
same as L-curve. In conclusion, we have

8



Theorem 2 Given p regularization parameters µ1, . . . , µp, we can find the best regularization parame-
ter in time O(

√
p(maxj κµj

)2(lognp)/ǫ2) in quantum computer, where κµj
is the condition number of(

A
µjI

)
.

5 Conclusion

The LSP solver is a basic engine in big data and machine learning. To obtain a meaningful solution
for an ill-posed problem, a regularization technique is necessary. The determination of regularization
parameter is the most important, but also the most time consuming. In this paper, based on L-curve
and GCV function, we proposed two quantum algorithms to solve the regularization parameter estimate
problem. The result shows that quantum computer can achieve a quadratic speedup in the number
of given regularization parameters and an exponential speedup in the dimension of problem size. The
complexity to find the best regularization parameter by L-curve or GCV function depends on the condition
number κµ of Aµ. For an ill-posed problem, the condition number κ ofA is often very large. For a properly
chosen parameter µ, the condition number κµ can be much smaller. But if the regularization parameter
µ is not good, then κµ can be still very large, and the HHL solver runs very slowly. For practical
implementation, it is reasonable to set a threshold τ = O(poly logn) for the runtime of HHL. If the
runtime is larger than τ , then we can conclude that the parameter is not good and stop the algorithm. In
this paper, we only focused on the determination of Tikhonov regularization parameter, but our analysis
is also applicable to TSVD.
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