Skip to main content
Log in

Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Combining with the idea of quantum multi-cast, in this paper, a novel theoretical scheme is presented to fulfil four-party quantum double-direction cyclic controlled communication by using a thirteen-qubit entangled state as the quantum channel. In the proposed scheme, each observer can transmit two different single-qubit states to the other two observers under the supervision of the controller, respectively and synchronously, which realizes quantum cyclic controlled communication in clockwise and anticlockwise directions simultaneously. The quantum channel is structured by Hadamard (H) gates and controlled-NOT (CNOT) gates. Based on the quantum channel that we construct, we exhibit how the four-party double-direction cyclic controlled communication scheme works in a minute detail. Only specific two-qubit projective measurements, single-qubit von Neumann measurement and suitable unitary operations are needed in the proposed four-party scheme, which can be implemented in physics easily. Furthermore, the presented four-party double-direction controlled communication scheme can be generalized into the situation with \(n>3\) observers through preparing a \((4n+1)\)-qubit entangled channel. Analysis demonstrates that the success probability of the proposed scheme can reach \(100\mathrm{{\% }}\). We also calculate the intrinsic efficiency and investigate the security of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    ADS  Google Scholar 

  3. Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23(2), 290–292 (2006)

    ADS  Google Scholar 

  4. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  5. Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161–164 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    MathSciNet  Google Scholar 

  7. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55(3), 1601–1611 (2016)

    MATH  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  9. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    ADS  Google Scholar 

  10. Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87(2), 022308 (2013)

    ADS  MathSciNet  Google Scholar 

  11. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    ADS  Google Scholar 

  12. Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495–1498 (2008)

    ADS  MATH  Google Scholar 

  13. Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    ADS  Google Scholar 

  14. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16–17), 4088–4093 (2011)

    ADS  Google Scholar 

  15. Jia, H.Y., Wen, Q.Y., Wu, X., Gao, F., Guo, F.Z.: Remote preparation of a six-particle entangled cluster-type state. Int. J. Theor. Phys. 51(7), 2086–2093 (2012)

    MATH  Google Scholar 

  16. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    ADS  Google Scholar 

  17. Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A: Math. Theor. 40(43), 13121–13130 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)

    ADS  Google Scholar 

  20. Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12(1), 237–249 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61, 022501 (2018). https://doi.org/10.1007/s11432-016-9151-x

    Article  MathSciNet  Google Scholar 

  22. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At., Mol. Opt. Phys 40(18), 3719–3724 (2007)

    ADS  Google Scholar 

  23. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55(7), 3454–3466 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional Greenberger–Horne–Zeilinger states. Int. J. Theor. Phys. 57(1), 148–158 (2018)

    MATH  Google Scholar 

  25. Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17, 340 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2(10), 1–10 (2019)

    Google Scholar 

  27. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 62, 042303 (2001)

    ADS  MATH  Google Scholar 

  28. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    ADS  Google Scholar 

  29. Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016)

    Google Scholar 

  30. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16, 147 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    MathSciNet  Google Scholar 

  32. Duan, Y.J., Zha, X.W.: Bidirectional controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014)

    MATH  Google Scholar 

  33. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58(10), 3594–3601 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Sun, Y.R., Chen, G., Xu, X.B., Yang, Y., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in noisy environment. IEEE Access. 7, 2811–2822 (2018)

    Google Scholar 

  37. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Bidirectional controlled remote state preparation of an arbitrary two-qubit state. Int. J. Theor. Phys. 58(7), 2228–2234 (2019)

    MATH  Google Scholar 

  38. Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)

    MATH  Google Scholar 

  39. Shi, J., Zhan, Y.B.: Scheme for asymmetric and deterministic controlled bidirectional joint remote state preparation. Commun. Theor. Phys. 70(5), 515–520 (2018)

    ADS  MathSciNet  Google Scholar 

  40. Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)

    MATH  Google Scholar 

  41. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Schemes for hybrid bidirectional controlled quantum communication via multi-qubit entangled states. Int. J. Theor. Phys. 57(2), 443–452 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Chen, Y.X., Du, J., Liu, S.Y., Wang, X.H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Sang, Z.W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57(12), 3835–3838 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Shao, Z.L., Long, Y.X.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58(6), 1957–1967 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(5), 1541–1545 (2019)

    MATH  Google Scholar 

  46. Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271–3281 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC-Comput. Mater. Con. 55(2), 321–329 (2018)

    ADS  Google Scholar 

  48. Sang, Z.W.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 255–260 (2019)

    MATH  Google Scholar 

  49. Jiang, S.X., Zhou, R.G., Xu, R.Q., Luo, G.F.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access. 7, 80530–80541 (2019)

    Google Scholar 

  50. Yu, Y., Zhao, N.: General quantum broadcast and multi-cast communications based on entanglement. Opt. Express. 26(22), 22296–22310 (2018)

    Google Scholar 

  51. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    ADS  Google Scholar 

  52. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    ADS  Google Scholar 

  53. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(9), 3927–3933 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant number 61801218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiya Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhang, H. Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf Process 19, 120 (2020). https://doi.org/10.1007/s11128-020-2619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2619-5

Keywords

Navigation