Skip to main content
Log in

Simplistic quantum operation sharing with a five-qubit genuinely entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on local operations and classical communication, a tripartite quantum operation sharing (QOS) scheme is proposed by utilizing a genuine five-qubit entangled state as quantum channel. The present scheme has such prominent features as the arbitrariness of the concerned operation and the determinacy of sharing successfully as well as the constancy of entanglement resource. Besides, its intrinsic efficiency has come up to 10\(\%\), higher than most previous QOS schemes. More importantly, in terms of complexity, the operations which are necessary to accomplish the present QOS task as a whole are extremely simplistic. In addition, our scheme is feasible with the current experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  2. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  3. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171 (2009)

    Article  ADS  Google Scholar 

  4. Tsai, C.W., Yang, C.W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58, 2244 (2019)

    Article  MATH  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  7. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18, 4 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. An, N.B., Cao, T.B., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zha, X.W., Song, H.Y.: Two schemes of remote preparation of a four-particle entangled W state via a six-qubit maximally entangled state. Phys. Scr. 84, 015010 (2011)

    Article  ADS  MATH  Google Scholar 

  11. Wang, Z.Y., Wang, D., Han, L.F.: Optimal remote preparation of a four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states. Int. J. Theor. Phys. 55, 4371 (2016)

    Article  MATH  Google Scholar 

  12. Wei, J.H., et al.: Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states. Quantum Inf. Process. 18, 237 (2019)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  15. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  16. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11, 615 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 104 (2019)

    Article  ADS  MATH  Google Scholar 

  18. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2000)

    Article  ADS  Google Scholar 

  19. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42, 115303 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  23. Zou, X.B., Pahlke, K., Mathis, W.: Teleportation implementation of nondeterministic quantum logic operations by using linear optical elements. Phys. Rev. A 65, 064305 (2002)

    Article  ADS  Google Scholar 

  24. Dur, W., Vidal, G., Cirac, J.I.: Optimal conversion of nonlocal unitary operations. Phys. Rev. Lett. 89, 057901 (2002)

    Article  ADS  Google Scholar 

  25. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger–Horne–Zeilinger states. Phys. Rev. A 75, 062323 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhao, N.B., Wang, A.M.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A 76, 062317 (2007)

    Article  ADS  Google Scholar 

  28. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  29. Ji, Q.B., Liu, Y.M., Liu, X.S., Yin, X.F., Zhang, Z.J.: Single-Qubit operation sharing with Bell and W product states. Commun. Theor. Phys. 60, 165 (2013)

    Article  ADS  Google Scholar 

  30. Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ji, Q.B., Liu, Y.M., Xie, C.M., Yin, X.F., Zhang, Z.J.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)

    Article  ADS  MATH  Google Scholar 

  32. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  33. Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877 (2015)

    Article  MATH  Google Scholar 

  35. Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quantum Inf. Process. 14, 4255 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Xie, C.M., Liu, Y.M., Xing, H., Zhang, Z.J.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17, 841 (2015)

    Article  ADS  Google Scholar 

  38. Xing, H., Liu, D.C., Xing, P.F., Xie, C.M., Liu, X.S., Zhang, Z.J.: Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two Bell states or a GHZ state. Int. J. Quantum Inf. 12, 1450012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, K.J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks–Deterministic quantum operation sharing schemes with Bell states. Sci. China-Phys. Mech. Astron. 59, 660302 (2016)

    Article  Google Scholar 

  40. Xing, H.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Zhou, S.Q., Bai, M.Q., Zhang, C.Y.: Analysis and construction of four-party deterministic operation sharing with a generalized seven-qubit Brown state. Mod. Phys. Lett. B 31, 1750190 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333 (2009)

    Article  ADS  Google Scholar 

  44. Qiu, L.: Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf. Process. 9, 643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Fang, S.H., Jiang, M.: Bidirectional and asymmetric controlled quantum information transmission via five-qubit Brown State. Int. J. Theor. Phys. 56, 1530 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16, 93 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Gupta, M., Pathak, A., Srikanth, R., Panigrahi, P.K.: Non-destructive orthonormal state discrimination. arXiv:quant-ph/0507096 (2005)

  48. Saha, D., Nandan, S., Panigrahi, P.K.: Local implementations of non-local quantum gates in linear entangled Channel. J. Quantum Inf. Sci. 4, 97 (2014)

    Article  Google Scholar 

  49. Vyas, N., Saha, D., Panigrahi, P.K.: Rooted-tree network for optimal non-local gate implementation. Quantum Inf. Process. 15, 3855 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  52. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  53. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  54. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  55. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  56. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  57. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  58. Deng, F.G., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  59. Zhou, P., Li, X.H., et al.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  60. Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

  61. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  MATH  Google Scholar 

  62. Solano, E., Cesar, Cl, de Matos Filho, R.L., Zagury, N.: Reliable teleportation in trapped ions. Eur. Phys. J. D 13, 121 (2001)

    Article  ADS  Google Scholar 

  63. Riebe, M., Häffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  64. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

  65. Peng, Z.H., Zou, J., Liu, X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED. J. Phys. B At. Mol. Opt. Phys. 41, 065505 (2008)

    Article  Google Scholar 

  66. Lim, H.T., Kim, Y.S., Ra, Y.S., Bae, J., Kim, Y.H.: Experimental realization of an approximate transpose operation for qutrit systems using a structural physical approximation. Phys. Rev. A 86, 042334 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referee for his/her valuable and helpful suggestions. This work is supported by the National Natural Science Foundation of China (Grant No. 61701002), the school-level key project of West Anhui University (Grant No. KJ103762015B23), and the Key Project of the Domestic Visiting and Studying for Outstanding Youth Cadre Teacher in Colleges and Universities of Anhui Province (Grant No. gxfxZD2016193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Zhang, Wb. & Yin, Xf. Simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf Process 19, 122 (2020). https://doi.org/10.1007/s11128-020-2620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2620-z

Keywords

Navigation