Skip to main content
Log in

Enhancing the teleportation of quantum Fisher information by weak measurement and environment-assisted measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum teleportation is reexamined in a Fisher information perspective. Two proposals of enhancing the teleportation of quantum Fisher information (QFI) under amplitude damping channel are proposed by utilizing the weak measurement and environment-assisted measurement (EAM), respectively. Although both schemes enable us to improve the teleportation of QFI with a certain probability, the latter proposal can completely recover the initial QFI, while the former only approaches to it. A detailed comparison confirms that the scheme of EAM outperforms the WM one in the improvements of QFI. The underlying reason is that the EAM is a post-measurement; thus, it extracts more information from the system and environment than the pre-posed WM. Our research offers an active way to enhance the teleportation of QFI under the amplitude damping decoherence, which is very important for quantum metrology and other quantum information tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channles. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  3. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-Induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  5. Popescu, S.: Bell’s inequality versus teleportation: What is Nonlocality? Phys. Rev. Lett. 72, 797–800 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236–4239 (2000)

    Article  ADS  Google Scholar 

  7. Bose, S., Vedral, V.: Mixedness and teleportation. Phys. Rev. A 61, 040101(R) (2000)

    Article  ADS  Google Scholar 

  8. Oh, S., Lee, S., Lee, H.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ozdemir, S.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)

    Article  ADS  Google Scholar 

  10. Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger-Horne-Zeilinger versus W state: Quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  11. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)

    Article  ADS  Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  14. Albarelli, F., Friel, J.F., Datta, A.: Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. Phys. Rev. Lett. 123, 200503 (2019)

    Article  ADS  Google Scholar 

  15. Rubio, J., Dunningham, J.: Quantum metrology in the presence of limited data. New J. Phys. 21, 043037 (2019)

    Article  ADS  Google Scholar 

  16. Yang, Y.: Memory effects in quantum metrology. Phys. Rev. Lett. 123, 110501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  18. Suzuki, J.: Entanglement detection and parameter estimation of quantum channels. Phys. Rev. A 94, 042306 (2016)

    Article  ADS  Google Scholar 

  19. Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 99, 012304 (2019)

    Article  ADS  Google Scholar 

  20. Li, Y., Li, P.: Detection of genuine N-Qubit W state, GHZ state and Twin-Fock state via Quantum Fisher information. Phys. Lett. A 384, 126413 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yin, S., Song, J., Zhang, Y., Liu, S.: Quantum Fisher information in quantum critical systems with topological characterization. Phys. Rev. B 100, 184417 (2019)

    Article  ADS  Google Scholar 

  22. Guo, Y.N., Zeng, K., Chen, P.X.: Teleportation of quantum Fisher information under decoherence channels with memory. Laser Phys. Lett. 16, 095203 (2019)

    Article  ADS  Google Scholar 

  23. El Anouz, K., El Allati, A., El Baz, M.: Teleporting quantum Fisher information for even and odd coherent states. J. Opt. Soc. Am. B 37, 38–47 (2020)

    Article  ADS  Google Scholar 

  24. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  25. Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cramér-Rao bound. Phys. Rev. Lett. 112, 120405 (2014)

    Article  ADS  Google Scholar 

  26. Lu, X.M., Yu, S., Oh, C.H.: Robust quantum metrological schemes based on protection of quantum Fisher information. Nat. Commun. 6, 7282 (2015)

    Article  ADS  Google Scholar 

  27. Berrada, K.: Protecting the precision of estimation in a photonic crystal. J. Opt. Soc. Am. B 32, 571–576 (2015)

    Article  ADS  Google Scholar 

  28. Chen, Y., Zou, J., Long, Z.W., Shao, B.: Protecting quantum Fisher information of N-qubit GHZ state by weak measurement with flips against dissipation. Sci. Rep. 7, 6160 (2017)

    Article  ADS  Google Scholar 

  29. Liu, Z., Qiu, L., Pan, F.: Enhancing quantum coherence and quantum Fisher information by quantum partially collapsing measurements. Quant. Inf. Process. 16, 109 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jin, Y.: The effects of vacuum fluctuations on teleportation of quantum Fisher information. Sci. Rep. 7, 40193 (2017)

    Article  ADS  Google Scholar 

  31. Metwally, N.: Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 045202 (2017)

    Article  ADS  Google Scholar 

  32. Jafarzadeh, M., Rangani, Jahromi H., Amniat-Talab, M.: Teleportation of quantum resources and quantum Fisher information under Unruh effect. Quant. Inf. Process. 17, 165 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  34. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2420 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)

    Article  ADS  Google Scholar 

  37. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  38. Paraoanu, G.S.: Partial measurements and the realization of quantum-mechanical counterfactuals. Found. Phys. 41, 1214–1235 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  40. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  41. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., ÓConnell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  42. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Exp. 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  43. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  44. Wang, K., Zhao, X., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A 89, 042320 (2014)

    Article  ADS  Google Scholar 

  45. Jafarzadeh, M., Rangani, Jahromi H., Amniat-Talab, M.: Effects of partial measurements on quantum resources and quantum Fisher information of a teleported state in a relativistic scenario. Proc. R. Soc. A 476, 20200378 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  47. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  48. Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    Article  ADS  Google Scholar 

  49. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  50. Zhong, W., Sun, Z., Ma, J., Wang, X.G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  51. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  52. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  53. Xiao, X., Xie, Y.M., Yao, Y., Li, Y.L., Wang, J.C.: Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. Ann. Phys. 390, 83–94 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  54. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  55. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60(3), 1888 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  57. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Matteo Fadel and Qiongyi He for comments on the manuscript. This work is supported by the Funds of the National Natural Science Foundation of China under Grant Nos. 61765007, 11665004 and 11805040. YL Li is supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Derivation of \(F_{\phi , C}\)

According to the optimal quantum cloning machine [56, 57], one qubit can be cloned into M copies

$$\begin{aligned} \alpha | 0\rangle +\beta |1\rangle \rightarrow \alpha |\varphi _{0}\rangle + \beta |\varphi _{1}\rangle , \end{aligned}$$
(A.1)

where

$$\begin{aligned} |\varphi _{0}\rangle= & {} \sum _{j_{1}=0}^{M-1} \sqrt{\frac{2(M-j_{1})}{M(M+1)}}|\{0,M-j_{1}\},\{1, j_{1}\}\rangle _{C} \otimes |\{0,M-1-j_{1}\},\{1, j_{1}\}\rangle _{A}\\ |\varphi _{1}\rangle= & {} \sum _{j_{2}=0}^{M-1}\sqrt{\frac{2(M-j_{2})}{M(M+1)}} |\{0,M-j_{2}\},\{1, j_{2}\}\rangle _{C} \otimes |\{0,j_{2}\},\{1, M-1-j_{2}\}\rangle _{A}. \end{aligned}$$

In the above, the subscripts C and A indicate the copies hold by M qubits and the \(M-1\) ancilla qubits, respectively. \(|\{0,M-j\},\{1, j\}\rangle \) denotes the symmetric and normalized state of M qubits with \((M-j)\) qubits in state \(|0\rangle \) and j qubits in the orthogonal state \(|1\rangle \).

After tracing the ancilla qubits, the copies can be given by

$$\begin{aligned} \rho _{C}= & {} \alpha ^{2} \sum _{j=0}^{M-1} \frac{2(M-j)}{M(M+1)} |\{0, M-j\},\{1, j \}\rangle _{C} \langle \{0,M-j \}, \{1,j \}| \nonumber \\&+ 2 \alpha \beta ^{*} \sum _{j=0}^{M-1} \frac{\sqrt{(M-j)(j+1)}}{M(M+1)} |\{0, M-j\},\{1, j \}\rangle _{C} \langle \{0,M-1-j \}, \{1,j+1\}|\nonumber \\&+ 2 \alpha \beta \sum _{j=0}^{M-1} \frac{\sqrt{(M-j)(j+1)}}{M(M+1)} |\{0, M-1-j\},\{1, j+1 \}\rangle _{C} \langle \{0,M-j \}, \{1,j \}|\nonumber \\&+ |\beta |^{2} \sum _{j=0}^{M-1} \frac{2(M-j)}{M(M+1)} |\{0, j\},\{1,M- j \}\rangle _{C} \langle \{0, j \}, \{1, M-j \}|. \end{aligned}$$
(A.2)

One of the copies can be described by

$$\begin{aligned} \rho= & {} \left( \frac{2M+1}{3M} \alpha ^{2}+\frac{M-1}{3M} |\beta |^{2}\right) | 0\rangle \langle 0 | +\frac{M+2}{3M} \alpha \beta ^{*} | 0\rangle \langle 1 | \nonumber \\&+ \left( \frac{2M+1}{3M} |\beta |^{2}+\frac{M-1}{3M} \alpha ^{2}\right) | 1\rangle \langle 1| + \frac{M+2}{3M} \alpha \beta | 1 \rangle \langle 0 |. \end{aligned}$$
(A.3)

Assume \(\alpha = \cos \frac{\theta }{2}\), \(\beta = e^{i\phi } \sin \frac{\theta }{2}\). The Bloch vector of the state is

$$\begin{aligned} {\mathbf {r}}_{x}= & {} \frac{M+2}{3M} \sin \theta \cos \phi , \end{aligned}$$
(A.4)
$$\begin{aligned} {\mathbf {r}}_{y}= & {} \frac{M+2}{3M} \sin \theta \sin \phi , \end{aligned}$$
(A.5)
$$\begin{aligned} {\mathbf {r}}_{z}= & {} \frac{M+2}{3M} \cos \theta . \end{aligned}$$
(A.6)

The QFI of \(\phi \) encoded in the cloned qubit is

$$\begin{aligned} F_{\phi }=\left( \frac{M+2}{3M}\right) ^2 \sin ^{2} \theta . \end{aligned}$$
(A.7)

In classical situations, one can make infinite number of copies of a state, i.e., \(M \rightarrow \infty \). Correspondingly, the \(F_{\phi }\) approaches to

$$\begin{aligned} F_{\phi ,C}=F_{\phi }^{M \rightarrow \infty }=\frac{1}{9} \sin ^{2} \theta . \end{aligned}$$
(A.8)

When \(\theta =\pi /2\), \(F_{\phi ,C}=1/9\), which is the largest QFI obtained with classical operations.

Appendix B. Derivation of Eq. (21)

The schemes proposed in this manuscript are non-deterministic because of the non-unitary operations of WM and QMR. WM can be regarded as POVM and the probability could be calculated by following the standard postulate of quantum measurement. The probability of obtaining the measurement outcome of \(M_{\mathrm{tot}}=M_{\mathrm{WM}}^{(2)} \otimes M_{\mathrm{WM}}^{(3)}\) is

$$\begin{aligned} {\mathcal {P}}_{1}= & {} tr\left( M_{\mathrm{tot}}^{\dagger }M_{\mathrm{tot}} \rho \right) \\= & {} \frac{(1+\eta ) (1+\bar{p_{1}} \bar{p_{2}})+ {\bar{\eta }} ( \bar{p_{1}}+\bar{p_{2}})}{4}.\nonumber \end{aligned}$$
(B.1)

Then, the reduced state will pass through the AD channel, which yields to

$$\begin{aligned} \varrho _{\mathrm{AD}}=\Big [\sum _{i=0}^{3} K_{i}\big (M_{\mathrm{tot}} \rho M^{\dagger }_{\mathrm{tot}}\big )K_{i}^{\dagger }\Big ]. \end{aligned}$$
(B.2)

The probability of obtaining the measurement outcome of \({\mathcal {W}}_{\mathrm{tot}}={\mathcal {M}}_{\mathrm{QMR}}^{(2)} \otimes {\mathcal {M}}_{\mathrm{QMR}}^{(3)}\) is

$$\begin{aligned} {\mathcal {P}}_{2}=tr\left( {\mathcal {W}}_{\mathrm{tot}}^{\dagger }{\mathcal {W}}_{\mathrm{tot}} \varrho _{\mathrm{AD}}\right) =\frac{N}{{\mathcal {P}}_{1}}, \end{aligned}$$
(B.3)

where N is the normalization factor of Eq. (13). The final success probability depends on the WM and QMR are performed successfully

$$\begin{aligned} P_{\mathrm{WM}}={\mathcal {P}}_{1}{\mathcal {P}}_{2}=N. \end{aligned}$$
(B.4)

This means the final success probability just equals to the final normalization factor of the teleported state. Choosing the optimal QMR strength \(q^{\mathrm{opt}}_{\mathrm{WM}} = 1- \sqrt{\frac{B}{A}}\), the above equation reduces to Eq. (21).

Appendix C. Derivation of Eq. (22)

After experienced the AD noise, the Werner state will be evolved into

$$\begin{aligned} \varrho '= & {} \sum _{i=0}^{3} K_{i}\rho K_{i}^{\dagger }\nonumber \\= & {} \varrho '_{11} |00\rangle _{23} \langle 00| +\varrho '_{22} |01\rangle _{23} \langle 01| +\varrho '_{33} |10\rangle _{23} \langle 10|\\&+\varrho '_{44} |11\rangle _{23} \langle 11| +\varrho '_{14} |00\rangle _{23} \langle 11| + \varrho '_{41} |11\rangle _{23} \langle 00|, \nonumber \end{aligned}$$
(C.1)

where

$$\begin{aligned} \varrho '_{11}= & {} [1+\eta +2{\bar{\eta }}\gamma +(1+\eta ) \gamma ^{2}]/4, \\ \varrho '_{22}= & {} \varrho '_{33}=[{\bar{\eta }}{\bar{\gamma }}+(1+\eta )\gamma {\bar{\gamma }}]/4, \\ \varrho '_{44}= & {} (1+\eta ){\bar{\gamma }}^{2}/4, \\ \varrho '_{14}= & {} \varrho '_{41} = \eta {\bar{\gamma }}/2, \end{aligned}$$

where we have assumed \(\gamma _{1}=\gamma _{2}=\gamma \). By the assistant of EAM, the quantum state corresponding to “no click” is picked out, i.e.,

$$\begin{aligned} \varrho '_{\mathrm{EAM}}= & {} K_{0}\rho K_{0}^{\dagger }\\= & {} \frac{1}{Q}\left( \begin{array}{cccc}\frac{(1+\eta )}{4} &{} 0 &{} 0 &{} \frac{\eta {\bar{\gamma }} }{2} \\ 0 &{} \frac{(1-\eta ){\bar{\gamma }}}{4} &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{(1-\eta ){\bar{\gamma }}}{4} &{} 0 \\ \frac{\eta {\bar{\gamma }} }{2} &{} 0 &{} 0 &{} \frac{(1+\eta ){\bar{\gamma }}^2 }{4}\end{array}\right) , \end{aligned}$$

with \(Q=\frac{1+\eta }{4}+ \frac{1-\eta }{2} {\bar{\gamma }}+ \frac{1+\eta }{4} {\bar{\gamma }}^{2}\). Following the operations of QMR described by Eq. (5), one can get Eq. (22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YL., Sun, F., Yang, J. et al. Enhancing the teleportation of quantum Fisher information by weak measurement and environment-assisted measurement. Quantum Inf Process 20, 55 (2021). https://doi.org/10.1007/s11128-021-02998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-02998-1

Keywords

Navigation