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The quantum approximate optimization algorithm (QAOA) is a method of approximately solving
combinatorial optimization problems. While QAOA is developed to solve a broad class of combi-
natorial optimization problems, it is not clear which classes of problems are best suited for it. One
factor in demonstrating quantum advantage is the relationship between a problem instance and
the circuit depth required to implement the QAOA method. As errors in NISQ devices increases
exponentially with circuit depth, identifying lower bounds on circuit depth can provide insights
into when quantum advantage could be feasible. Here, we identify how the structure of problem
instances can be used to identify lower bounds for circuit depth for each iteration of QAOA and
examine the relationship between problem structure and the circuit depth for a variety of combina-
torial optimization problems including MaxCut and MaxIndSet. Specifically, we show how to derive
a graph, G, that describes a general combinatorial optimization problem and show that the depth of
circuit is at least the chromatic index of G. By looking at the scaling of circuit depth, we argue that
MaxCut, MaxIndSet, and some instances of Vertex Covering and Boolean satisifiability problems
are suitable for QAOA approaches while Knapsack and Traveling Sales Person problems are not.

I. INTRODUCTION

In 2014, Farhi, Goldstone, and Gutmann introduced the quantum approximate optimization algorithm (QAOA)
to approximately solve combinatorial optimization problems [6]. In classical combinatorial optimization, problems
are defined by n bits and m clauses. To solve optimization problems using QAOA, the clauses are converted to
Hamiltonians, and the state of the graph is initially |s〉 = 1√

2n
Σz|z〉, where {|z〉} is the computational basis. For

p ∈ N, the p-level QAOA requires 2p angles, ~γ = (γ1, ..., γp) and ~β = (β1, ..., βp) and alternates between the mixing
Hamiltonian, B, and the problem Hamiltonian, C, to generate the state∣∣∣ψ(~γ, ~β)

〉
= U(B, βp)U(C, γp)...U(B, β1)U(C, γ1)|s〉

where U(A, φ) = e−iAφ. B and C depend on the problem of interest and the angles that maximize them can be found
using classical preprocessing [12, 21, 22].

Previously, QAOA has been used to solve bounded constraint problems [7] and has been studied on near-term
devices [27]. Additionally, it has been used to look at lattice protein folding [9], the Max-k vertex cover problem
[3] and inspired an approach for solving linear systems using quantum computing [13]. MaxCut and maximum
independent set are examples of two problems that have been well studied with QAOA [4, 11, 20, 24]. Both can be
represented as quadratic unconstrained problems, otherwise known as a QUBO. It has also been shown to exhibit a
form of computational advantage in the sense that the output of low depth circuits cannot be efficiently classically
simulated [8] and general strategies have been studied for implementing it on hardware graphs [25].
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In this paper we investigate the potential of using quantum computing to solve combinatorial optimization problems
of the form

min c(x) (1)

s.t. pi(x) ≤ bi ∀i ∈ P (2)

x ∈ {0, 1}n (3)

where both pi, contained in the collection of polynomial constraints P , and c are polynomial functions in Rn[x1, x2, ..., xn]
and bi ∈ R.

We identify the relationship between combinatorial optimization problems and the corresponding depth of circuit
for QAOA approaches to solving this problem. Xue, Chen, Wu, and Guo showed that the cost function for QAOA
decreases with the number of gates and level of noise in NISQ devices [26], so in this paper, we specifically focus
on circuit depth, although an equally important component of the fidelity of a solution is the number of iterations
needed. We only look at a single iteration because we consider all iterations have the same depth.

In Sec. II, we define graph theory terms that will be used throughout the paper. Next, in Sec. III, we discuss how
to map arbitrary combinatorial optimization problems to polynomial unconstrained binary optimization problems
(PUBOs) by dualizing constraints, and apply the method to MaxCut, Maximum Independent Set, and a general
combinatorial optimization problem. Additionally, we discuss how use the PUBOs to derive a hypergraph that
represents a specific optimization problem and show that one plus the chromatic index of the hypergraph is equal to
the depth of QAOA circuit needed to run a combinatorial optimization problem. Using this result, we analyze the
depth of circuit for the MaxCut, Maximum Independent Set, and general combinatorial optimization problems. We
then consider Vertex Covering, Knapsack, Traveling SalesPerson, and Boolean satisfiability problems, determine the
depth of circuit required to use QAOA to solve them, and discuss the feasibility of performing them on NISQ devices
in Sec. IV. Finally, in Sec. V, we discuss avenues for future work.

II. BACKGROUND

In this section, we define graph theory terms that will be used in upcoming sections. An edge coloring of a simple
graph G = (V,E) is a labeling f : E −→ [k], where each number represents a color. An edge coloring is proper if
for all edges uv and xv, f(uv) 6= f(xv). The smallest number of colors needed for a proper coloring of G is the edge
chromatic number, sometimes referred to as the chromatic index, denoted χ′(G), and we say all edges with the same
label belong to the same color class. A well known result by Vizing states that χ′(G) ∈ {∆,∆ + 1}, where ∆ is the
maximum degree of G [23].

A hypergraph H = (VH , EH) is a generalization of a graph in which an edge may join more than two vertices. If
there are n vertices in H, then E ⊂ P \ {∅}. H is linear if two edges share at most one vertex, and it is k-uniform if
all edges contain exactly k vertices. A hypergraph clique is a collection of edges, Hc ⊂ EH , such that every element
of Hc is pairwise intersecting. A proper hypergraph edge coloring is analogous to an edge coloring of a graph in that
if a vertex is contained in multiple edges, they all receive distinct colors.

III. MAPPING ARBITRARY COMBINATORIAL OPTIMIZATION PROBLEMS TO PUBO

When considering combinatorial optimization problems, we will use the method of dualizing constraints to solve
them and analyze circuit depth. Other methods may give different results. Consider a constraint pi(x) ≤ bi, where
x = {x1, ..., xn}. We can dualize this constraint by penalizing any solution x′ with pi(x

′) ≥ bi as follows. Let
p
i

= min
x∈{0,1}n

pi(x). The “most feasible” solution with respect to constraint i is going to be feasi = p
i
− bi away from

the constraint. Let ki = dln feasie. We can omit constraint i from the set of constraints and add the term

λi

pi(x) +
∑
j∈[ki]

2jδij − bi

2

(4)

where λi is any large, positive parameter penalizing violation of constraint i and δij are additional binary variables.
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In multiplying out the above constraint, we get

λi

pi(x)2 + 2
∑

j=∈[ki]

2jpi(x)δij − 2bipi(x) +

∑
j∈[ki]

2jδij

2

− 2
∑
j∈[ki]

2jbiδij + b2i

 . (5)

The cost of this transformation is an increase in the potentially large number of new δij variables.
Using the above process, we can write any combinatorial optimization problem of type (1) as

min
x∈{0,1}n,δ∈{0,1}ki

c(x) +
∑
i∈P

λi

pi(x)2 + 2
∑
j∈[ki]

2jpi(x)δij − 2bipi(x) +

∑
j∈[ki]

2jδij

2

− 2
∑
j∈[ki]

2jbiδij + b2i

 . (6)

If all pi constraints are linear and c is quadratic, the resulting unconstrained problem is a QUBO. Simplifying
notation, we can think of a combinatorial optimization problem as the sum of monomials of the polynomial pi(x),

min
x∈{0,1},δ∈{0,1}ki

∑
mi∈ Mi

mi(x, δ),

where Mi is the set of monomials of pi(x)

1. Examples

In this section, we give examples of problems and how to map them to PUBOs.
Example: MaxCut
In the combinatorial optimization problem MaxCut, the vertices of a graph, G = (V,E), are partitioned into two

sets such that the number of edges with an end point in each set is maximized. This problem can be formulated as

min
x∈{0,1}n

∑
ij∈E(G)

xj(xi − 1) + xi(xj − 1) = min
x∈{0,1}n

∑
ij∈E(G)

2xixj − xi − xj

Note that P = {∅}, so there are no δij terms when the problem is dualized. For example, consider the wheel graph
on six vertices, W6, as seen in Figure 1.

In this example, we want to minimize

2x1x2 − x1 − x2 + 2x1x3 − x1 − x3 + 2x1x4 − x1 − x4+

2x1x5 − x1 − x5 + 2x1x6 − x1 − x6 + 2x2x3 − x2 − x3+

2x2x6 − x2 − x6 + 2x3x4 − x3 − x4 + 2x4x5 − x4 − x5 + 2x5x6 − x5 − x6
where xi ∈ {0, 1} for all i ∈ [6].
Example: Maximum Independent Set
Let G = (V,E) be a simple, undirected graph. In the maximum independent set problem, often denoted MaxIndSet,

the goal is to find the largest set of independent vertices, or vertices that are not pairwise adjacent. This problem can
be written as

max
∑
i∈V

xi (7)

s.t. xixj = 0 ∀(i, j) ∈ E (8)

x ∈ {0, 1}n (9)

P 6= {∅}, as |P | = |E|, but for all pi, pi = 0, so feasi = 0 for all i, and the new formulation is

max
x∈{0,1}n

∑
i

xi +
∑

(i,j,)∈E

λxixj .
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v1

v2

v3

v4

v5 v6

FIG. 1: The wheel graph on six vertices with the edges properly colored. There are five color classes: solid green,
dashed blue, densely dotted red, loosely dotted black, and dotted dashed orange.

For the graph given in Fig. 1, the resulting optimization function is:

x1 + x2 + x3 + x4 + x5 + x6+

λ(x1x2 + x1x3 + x1x4 + x1x5 + x1x6+

x2x3 + x3x4 + x4x5 + x5x6 + x2x6)

Example: General optimization problem
As a final example, consider

max
∑
i∈[3]

xi (10)

s.t. x1x2 + x2x3 + 2x1x3 ≤ 3 (11)

xi ∈ {0, 1} (12)

Now, pi = 0, so feas = 3. Dualizing the first constraint, we get

max(x, λ)
∑
i∈[3]

xi + λ(x1x2 + x2x3 + 2x1x3 − δ11 − 2δ12 − 3)2

=
∑
i∈[3]

xi + λ(−5x1x2 + 10x1x2x3 − 5x2x3 − 8x1x3 − 2δ11x1x2−

2δ11x2x3 − 4δ11x1x3 − 4δ12x1x2 − 4δ12x2x3 − 7δ11 + 16δ12 + 4δ11δ12 + 9).

A. A QAOA Approach

This section assumes we are optimizing a problem of the form minx∈{0,1}n
∑
mi∈M mi(x). The natural extension

of QAOA on general PUBOs is to define the unitary operator U(C, γ) = e−iγC =
∏
mi∈M e−iγmi =

∏
mi∈M U(mi, γ),

while the mixing operator remains U(B, β) = e−iβB where B = Σv∈V (G)Bv, Bv = σxv for v ∈ V (G) and σxv is the
Pauli X operator acting on qubit v. U(C, γ) can be compiled on a circuit by decomposing it into a sequence of gates
performing all U(mi, γ) operators. The number of qubits each U(mi, γ) acts on is the number of variables in monomial
mi, which depends on the size of the support of pi, denoted supp(pi). We seek to explore the relationship between
the structure of the monomial and the minimum depth required for a quantum circuit to optimize such a function.

First, we assume that all mi have been combined optimally to fit the hardware, meaning each polynomial has size
at most the maximal gate size the hardware supports, and any monomials that can be combined and fit on one gate
have been combined. Although current hardware currently supports gate width of two, we look at larger gate width
for completeness. Operators U(mi, γ) and U(mj , γ) cannot be performed in parallel unless they act on disjoint sets of
qubits. With that in mind, we construct a proper hypergraph edge coloring that minimizes the total depth of circuit,
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where edges of the same color represent sets of operators that can be performed in parallel. We let H = (VH , EH) be
such a hypergraph where VH = {1, . . . , n} and EH consists of edges ei = supp(mi) for all mi ∈M .

Theorem 1. Every proper edge coloring of H corresponds to a valid circuit for PUBO, where the depth of the
shallowest circuit is χ′(H) + 1.

Proof. Let vavb...vd be the support of monomial mi and vevf ...vh be the support of monomial mj such that
{va, vb, ..., vd} ∩ {ve, vf , ..., vh} = {∅}. Then, U(Cmi , γ) and U(Cmj , γ) can be implemented simultaneously in a
circuit. Since the intersection is empty, the edges may receive the same color in a proper coloring, but do not
necessarily, as there may be several proper colorings of one graph. Thus, a proper edge coloring gives a feasible
implementation of a circuit that can be used to perform MaxCut. There exists a coloring of H that uses exactly
χ′(H) colors, and by definition, any coloring that uses fewer colors is not proper. If the coloring is not proper, two
edges that share a vertex have the same color and their corresponding gates cannot be implemented simultaneously.
Hence, the depth of the shallowest circuit is χ′(H) + 1, as one must be added to account for U(B, β).

Determining the chromatic index of hypergraphs in general is a difficult problem. In 1972, Erdös, Faber, and
Lovász conjectured that the chromatic index of any linear hypergraph on n vertices is at most n [5]. Since then,

the conjecture has been proven if H satisfies ∆(H) ≤
√
n+
√
n+ 1 [18]. Additionally, Chang and Lawler showed

that the chromatic index of a hypergraph H on n vertices is at most d1.5n − 2e with no restriction on the degrees
of the vertices. In 1992, Kahn showed that χ′(H) ≤ n + o(n) for linear H [14]. Note that since any two edges in a
linear hypergraph intersect in at most one vertex, that is equivalent to saying any two monomials in an optimization
problem share at most one common variable. As there are bounds on the chromatic index of linear hypergraphs, in a
general combinatorial optimization problem, one could attempt to relax the problem such that for any two monomials
a and b, |supp(a) ∩ supp(b)| ≤ 1 in order to have a rough bound on the depth of the circuit.

In addition to linear hypergraphs, there has been work on bounding the chromatic index of k-uniform hypergraphs.
Pippenger and Spencer proved that if a k-uniform hypergraph has minimum degree asymptotic to the maximum degree
and asymptotic codegree negligible compared to the maximum degree, then for some δ > 0, χ′(H) ≤ (1 + δ)∆(H)
[19]. Later, Alon and Kim showed that if H is k-uniform and if any two edges have at most t vertices in common
and maximum degree sufficiently large as a function of k, then |Eh| ≤ (t− 1 + 1

t )∆(H), which bounds the chromatic
index of H from above [1]. As each edge in a k-uniform hypergraph contains k vertices, it is equivalent to the original
combinatorial optimization problem containing monomials that consist of precisely k variables. Thus, the circuit
depth of problems that can be written such that each monomial has the same size support can be bounded.

We can potentially combine U(Ca, γ) and U(Cb, γ) into U(Ca,b, γ), which could reduce the number of colors needed
for the corresponding graph. Doing so, however, requires solving a potentially difficult optimization problem. Consider
the problem:

min
∑
c∈C

zc (13)

s.t.
∑
s∈S

xcs ≤ |S| − 1 ∀ c ∈ C, S s.t. | ∪s∈S s| > L (14)

xce ≤ zc ∀ e ∈ E, c ∈ C (15)

x, z ∈ {0, 1} (16)

where L is the number of qubits in the largest gate the hardware can perform, c is a color in the collection of colors C,
s is an edge of S ⊂ E(H), and xcs indicates that s receives color c in a particular proper coloring. One obvious example
of how to combine gates is, if for monomials a and b, supp(a) ⊂ supp(b) then the size of the gate required for U(Ca,b, γ)
will be identical to U(Cb, γ). Thus, U(Ca, γ) and U(Ca,b, γ) can be combined since supp(a) ∪ supp(b) = supp(b).

Throughout the rest of this paper, we define the derived graph as the graph corresponding to a combinatorial
optimization problem whose vertex set consists of the variables in the problem and whose edges connect vertices that
are found in a common monomial. The derived hypergraph is similarly defined.

1. Examples continued

In this section, we analyze the structure of the resulting hypergraphs built from the examples in Section III 1 and
discuss how this impacts the difficulty of performing each problem on NISQ devices.

Example: MaxCut, continued
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The support of the cost function is six, but each gate acts on two qubits in the circuit since each monomial has
at most two unique xi terms. We can define gates U(Ci,j , γ) for monomials that have two variables, xi and xj , and
gates U(Ck, γ) for monomials in one variable, xk.

C1,2

C1,3 C1,4 C1,5 C1,6 C1 B1

C2,6

C2,3

C2 B2

C3,4

C1,3 C3 B3

C4,5

C1,4 C4 B4

C5,6

C5 C1,5 B5

C2,6 C6 C1,6 B6

FIG. 2: The circuit diagram for a 1-level QAOA on the wheel graph on six vertices. We use the notation Ci,j to
represent U(Ci,j , γ) to make the image clearer to read. If two qubits are used in one gate but not next to each other

in number order, the gate in the diagram appears split, but the pieces are in the same column.

As i, j,m, and n must be unique in order to run Ci,j and Cm,n at the same time, we can color the edges of a graph
G and perform operators associated to the edges of the same color class at once. However, each gate Ck can be run
simultaneously, as each depends on precisely one qubit. Thus, the depth of the circuit for MaxCut is either χ′(G) + 1
or χ′(G) + 2, as one must be added to account for the B gates, and the depth scales linearly with the number of
iterations of the algorithm. Figure 2 is a circuit diagram for implementing MaxCut on W6 using the PUBO mapping
and QAOA approach, where the circuit has a depth of χ′(G) + 2.

Example: Maximum Independent Set, continued
The support of the optimization function has size six, and each monomial is comprised of at most two variables.

The circuit diagram for this example is the same as in Example: MaxCut, continued, as it contains the same
monomials, up to constants and signs.

Example: General Optimization Problem, continued
Since several monomials in the function to optimize are contained in the support of others, the gates needed in the

QAOA circuit are those acting on x1x2x3, x1x2δ11, x1x2δ12, x1x3δ11, x1x3δ12, x2x3δ11, x2x3δ12 and δ11δ12, and
the associated hypergraph and coloring for it is Fig. 3. The circuit diagram for this example is seen in Fig. 4.

IV. QAOA CIRCUIT DEPTH BOUNDS FOR SOME COMBINATORIAL OPTIMIZATION PROBLEMS

In this section, we review some combinatorial optimization problems and discuss the depth of circuit required for
one QAOA iteration of each problem instance. NP-complete problems can be reduced to other NP-complete problems,
however the act of reducing may impact the depth of circuit, which may or may not be desirable depending on the
hardware.

A. Vertex Covering

A vertex cover of a graph G = (V,E) is a collection S ⊂ V such that for all xy ∈ E, at least one of x or y is
contained in S. Finding a minimum vertex covering is classically NP-complete [15] and is written as

min
∑
i∈V

xi

s.t. (1− xi) + (1− xj) ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1}

As each constraint consists of the sum of two unique variables and a constant, dualizing them gives monomials
consisting of at most two distinct variables, as each monomial corresponds to an edge in the graph. The derived
graph, has vertex set V = xi ∪ δij for i ∈ [n] and j 6= i with j ∈ [n]. Note that δij is incident only to vertices xi and
xj , as it only occurs in constraints including those variables. Thus, the depth of circuit is 2χ(G) + 1, so the difficulty
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x1 x2 x3

δ11 δ12

x1 x2 x3

δ11 δ12

FIG. 3: The coloring for the hypergraph in Example: General Optimization Problem. It has vertices x1, x2,
x3, δ11, and δ12. The edges have been placed into two separate images to show the coloring more clearly, though the
entire hypergraph contains the edges found in both figures. No colors are repeated between the left and right sides,

and the hypergraph requires seven colors.

|x1〉

Cx1,x2,x3

Cx1,x2,δ11 Cx1,x2,δ12

Cx1,x3,δ11 Cx1,x3,δ12

|x2〉

Cx2,x3,δ11

Cx2,x3,δ12

|x3〉

Cx1,x3,δ11

Cx1,x3,δ12

|δ11〉

Cδ11,δ12

Cx1,x2,δ11

|δ12〉 Cx1,x2,δ12 Cx2,x3,δ12 Cx1,x3,δ12

FIG. 4: The circuit diagram for Example: General Optimization Problem, continued. We use Ci,j,k to
represent U(Ci,j,k, γ) to make the image clearer to read. If multiple qubits are used in one gate but not next to each

other in number order, the gate in the diagram appears split, but the pieces are in the same column.

of covering problems is directly related to the maximum degree of the problem. Graphs with low degree allow for a
shallow circuit in one iteration of QAOA, so they should be suitable for NISQ devices.

B. Knapsack

In the knapsack problem, a collection of objects, xi for i ∈ [n], are assigned a weight, wi, and a value, vi. The goal
is to maximize the sum of the value of the objects while the sum of the weights of the objects is restricted to be less
than some constant W . This problem is NP-complete classically, as well [15]. As an integer program, it is written

max
∑
i∈[n]

vixi

s.t.
∑
i∈[n]

wixi ≤W

xi ∈ {0, 1}
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Knapsack problems where W is large pose problems for testing on quantum computers because the larger W is,
the more δij variables are needed when dualizing the constraint. The derived graph contains vertices for each x
variable and δ variable and is complete, meaning that its edge coloring has minimum coloring of at least n+ ln(W ),
however pre-processing can be used to reduce the depth of the embedding. Assuming the weights are ordered such
that w1 ≤ w2 ≤ ... ≤ wn, the total weight of an optimal solution must be at least W − wn, since, if not, there
is room in the knapsack for an additional item. With this in mind, the knapsack constraint can be written as
W − wn ≤

∑
i∈[n] wixi ≤ W, which now requires ln(wn) many additional variables and leads to a circuit depth of

n+ln(wn). In order for there to be nontrivial instances of the knapsack problem with small wn, there necessarily must
be small W . Knapsack problems with small W can be suitable for experimentation, however, classically, problems
with bounded W are polynomial, and can be easily solved by conventional computing by dynamic programming
[2, 10]. Thus, they may not be suitable for quantum computing.

C. Traveling Salesperson

The traveling salesperson problem (TSP) can be viewed as a problem on a graph G = (V,E) where each edge e
has an associated weight, we. The goal is to start in a vertex, say v1, use edges to visit each vertex exactly once, and
return to v1, all while minimizing the sum of the weights of the edges used. This problem is classically NP-hard, but
there exist some heuristics for the problem[16, 17].

Let xe represent if the salesperson travels along edge e.
one formulation of the problem is

min
∑
e∈E

wexe

s.t. 0 ≤ xe ≤ 1 ∀e ∈ E∑
e3i

xe = 2 ∀i ∈ V∑
e=(i, j), i∈Q, j∈Q

xe ≤ |Q| − 1 Q ( [n], |Q| ≥ 2.

The derived graph for TSP has vertex set xi ∪ δij , where there are two δij variables per constraint. The edges form
a complete graph on all xi vertices, and connect δij to δik for j 6= k. As there are two δ variables per constraint,
they form a disjoint collection of edges. The rest of the edges connect every xi variable to every δij variable. Thus,
the maximum degree of the graph is n− 1 plus twice the number of constraints. Denoting the number of constraints
as Nc, the depth of circuit is n − 1 + 2Nc, where Nc can be large, depending on the problem instance. Similarly to
knapsack problems, it can be difficult to implement TSP on NISQ devices because of the subtour constraint, Q ( [n],
and the fact that so many new variables are introduced in dualizing.

D. SAT

In Boolean satisfiability problems (SAT), there are a set of clauses, C, containing a set of literals, N . The goal is
to determine if the values of TRUE or FALSE can be assigned to each literal in a clause such that it evaluates to
TRUE. This problem, again, is classically NP-complete [15], even when each clause contains only three literals. Let
{zc}c∈C be a collection of indicator variables for clauses in three variables, where zi = 0 if clause i is satisfied and 1
if not. Let xi be the indicator variable denoting if literal i is satisfied. Let TRUEc (FALSEc) be the set of literals
that must be true (false) to satisfy clause c. Then, the problem can be written as

min
∑
c∈C

zc

s.t.
∑

xi=TRUEc

xi +
∑

xi=FALSEc

(1− xi) ≥ 1 + zc ∀c ∈ C

xi, zc ∈ {0, 1}
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However, taking the contrapositive, we have
∑
xi=TRUE

(1 − xi) +
∑
xi=FALSE

xi ≤ 2 + zc. The derived graph,

is again, a graph consisting of all xi vertices and two dummy variables, δ1c and δ2c , per clause. If xi appears in the
set of clauses Cxi

⊂ C, the degree of the xi, dxi
, is dxi

= | ∪c∈Cxi
c| − 1 + 2|Cxi

|. SAT can be a good problem for
NISQ devices if the set of literals is large while the number of literals in each clause and the number of clauses are
relatively small, as this guarantees a literal cannot occur in many clauses and each literal does not appear in clauses
with several others.

V. DISCUSSION

We have shown how to map arbitrary combinatorial optimization problems to polynomial unconstrained binary
optimization problems (PUBOs) by dualizing constraints, and applied the method to a few combinatorial optimization
problems. Additionally, we discussed how use the PUBOs to derive a graph that represents problem instances and
used this to show that the depth of the QAOA circuit needed to run the problem is χ′(G) + 1. We then considered
various combinatorial optimization problems and determined the depth of circuit required to use QAOA to solve
them. In particular, since the Vertex Covering problem has a low depth of circuit, it appears to be suitable for NISQ
devices, as do instances of SAT problems that have large sets of literals but few clauses and few literals in each clause.
Due to the number of new variables that must be introduced to dualize Knapsack and TSP, they do not appear to
be good problems to test on NISQ devices.

Clearly, the maximum degree of a vertex affects the circuit depth in combinatorial optimization problems in which
each monomial consists of at most two unique variables, such as MaxCut and MaxIndSet. Specifically, the depth of
the QAOA circuit is χ′(G) + 1, where χ′(G) for graphs that are not hypergraphs is ∆ or ∆ + 1, by a classic result of
Vizing [23]. In the case of monomials of at least three variables, a lower bound for the circuit depth is the number of
colors needed in a proper edge coloring of the associated hypergraph, H, which is a difficult problem. A trivial lower
bound on this number is the maximum degree of H while a trivial upper bound is the number of edges in H.

The depth of circuit is hard to determine in part because when dualizing, squaring p(x) can potentially yield
monomials with larger support than any in c. Sparser constraints are preferable because the polynomials have smaller
support, which decreases the size of each gate. However, sparser constraints does not imply a shallower circuit depth.
For example. consider MaxCut on a star graph on n vertices, that is a connected bipartite graph in which one part
contains one vertex and the other contains n− 1. The depth of circuit is n, as each edge must have a unique color.

As any combinatorial optimization problem can be mapped to a PUBO via dualizing constraints, we can examine
the resulting QAOA circuit and bound the depth of it by the edge coloring of the hypergraph associated to the
problem instance. Although current hardware is limited to two qubit gates, larger gates can be decomposed into two
qubit gates. It would be interesting to see if there is a way to construct a graph associated to the decomposed gates
and if its chromatic number, or some other property of the graph, determines the depth of circuit.
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