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Abstract

This work provides a comprehensive approach to analyze the entanglement between subsystems gen-
erated by identical particles, based on the symmetric/exterior algebra (SEA) and microcausality. Our
method amends the no-labeling approach (NLA) to quantify any type of identical particles’ entangle-
ment, especially fermions with the parity superselection rule. We can analyze the non-local properties
of identical particles’ states in a fundamentally equivalent way to those for non-identical particles, which
is achieved by the factorizability of the total Hilbert space of identical particles. This formal correspon-
dence between identical and non-identical particle systems turns out to be useful for quantifying the
non-locality generated by identical particles, such as the maximal CHSH inequality violation and the
GHJW theorem of identical particles.

1 Introduction

The particle identity is one of the essential quantum features, which is formally represented as the exchange
symmetry between states of particles in the first quantization language. Nevertheless, the notion of en-
tanglement mostly has developed based on the presupposition that non-identical particles distribute over
distinguishable sectors. This is mostly by a puzzle that arises when considering the entanglement and par-
ticle identity simultaneously [1]. The exchange symmetry of identical particles evokes superposed forms of
wave functions, which seems mathematically equivalent to entangled states. Hence, it becomes subtle to
discriminate physically extractable entanglement in multipartite systems of identical particles.

There have been several attempts to quantify the physical entanglement of identical particles [2–12] that
employ various techniques and definitions, such as Slater number [4] or subalgebra restriction [7, 8]. Also,
a recently introduced method, which the authors named no-labeling approach (NLA) [9–11], introduced a
seemingly unorthodox formalism to compute genuine non-local properties of identical particles. NLA has
drawn strong attention since it can handily quantify the entanglement of identical particles with well-known
measures such as entropy, concurrence [9, 10] and Schmidt number [13].

Even if not manifestly mentioned in the above works, NLA can be understood as the description of
identical particles with symmetric and exterior algebras (abbreviated as SEA in this work for convenience)
in the Fock space (see, e.g., [14]). However, as we will discuss in this work, when NLA is rigorously discussed
in the formalism of SEA, one can find that the algebraic relations defined in NLA are incomplete and even
incorrect to explain the nonlocality of identical particles in general, especially when the particles condensate
in each subsystem.

Here, we provide an extensive algebraic definition to quantify the nonlocality of identical particles in
SEA for the most genearl case. This linear algebra, which we name the local inner product, is obtained
by imposing the restrictions from microcausality to the Fock space of identical particles. By defining the
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local inner product, we can present rigorous separability conditions of identical particles in general and also
obtain the rigorous definition for the partial trace of identical particles. As a representative case, we analyze
the entanglement of bipartite fermions that preserves the parity superselection rule (PSSR). By evaluating
the generation process of entanglement from spatially coherent identical particles, we show that fermions
extract a larger amount of entanglement from the same coherence than bosons do, which is by the exchange
antisymmetry that represents the exclusion property of fermions.

Another crucial property that we can achieve from our approach is that the total Hilbert space of identical
particles is factorizable as non-identical ones, which is proved with the concept of quantum causality [15].
Many works that deals with many particle systems in the second quantization language (2QL) assume this
factorizability (see, e.g., [16, 17]), which seems still puzzling from the viewpoint of Fock space. Here we
rigorously resolve this problem. With the Hilbert space factorizability, one can eventually deal with the
states of identical particles in the equivalent manner to that of nonidentical particles. As an example,
we show that Gisin–Hughston–Jozsa–Wootters (GHJW) theorem [18, 19] can be proved to hold directly
in the formalism. The maximal violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality from the
superposition of vacuum and four-fermion state is also computed.

Our work is organized as follows: Section 2 presents theoretical preliminaries for the quantification of
identical particle nonlocality. The concept of the local inner product is defined. Section 3 applies the results
of Section 2 to the multipartite fermion systems. Section 4 proves the total Hilbert space of identical particles
is factorized according to the locality of subsystems and shows that a GHJW theorem and CHSH inequality
violation can be obtained for identical particles with the factorization. Section 5 summarizes our results and
discusses some possible future works.

2 Description of identical particles with symmetric/exterior alge-
bra (SEA) and the local inner product

In this section, we provide mathematical and physical preliminaries for quantifying the entanglement of
identical particles. We amend the algebraic relations defined in NLA for analyzing the entanglement of
identical particles in general. We first explain the SEA formalism and the role of microcausality in the
entanglement of identical particles. SEA and microcausality are combined to introduce a linear algebra,
which we dub the local inner product, to define the partial trace of identical particles that can be applied to
the most general cases.

2.1 Identical particles in Fock spaces

The second quantization language (2QL) has usually been considered the best way to treat a set of identical
particles in many-body quantum systems. However, when it comes to quantum information processing, 2QL
needs quite abstract algebraic methods to define the separability that is not directly related to Hilbert space
tensor product structure [5–8] and does not provide a direct formalism for the entanglement resource theory.

The no-labeling approach (NLA, [9–11]) is introduced as a midway language1 to analyze the entanglement
of identical particles in a more concrete and intuitive manner. From the mathematical viewpoint, NLA is
based on the SEA formalism of identical particles [14]. Unlike the first quantization language (1QL), SEA
directly reveals the exchange symmetry among particles. 1QL achieves the exchange symmetries of N
identical particles by superposing N -particle wave functions so that they become symmetric (for bosons)
or antisymmetric (for fermions) under the switches of particle pseudo-labels. On the other hand, SEA
includes notations that explicitly denote the symmetries, which are the symmetric product ∨ and exterior
(or antisymmetric) product ∧ [11, 14,20].

Here, we summarize a mathematical description of identical particles and some crucial algebraic results
in SEA (see Ref. [14] for a more detailed explanation). Our discussion reveals that the algebraic definitions

1It is a “midway language” because, on the one hand, it resembles the character of 1QL to denote states of particles directly,
and on the other hand, it also resembles the character of 2QL to inherently discard particle pseudo-labels.
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in NLA for the partial trace of identical particles need correction for a consistent quantification of the
entanglement.

We suppose a particle has the state Ψi = (ψi, si) where ψi is the spatial wavefunction and si contains all
the possible internal degrees of freedom. The total wavefunction of N identical particles is expressed with
the following definition:

Definition 1. (Symmetric and exterior tensor products) For a Hilbert space H (dimH = d) and state vectors

{|Ψi〉}Ni=1 ∈ H with |Ψi〉 =
∑d
a=1 Ψa

i |a〉 and Ψa
i ∈ C, the symmetric tensor product ∨ is defined as

|Ψ1, · · · ,ΨN 〉 ≡ |Ψ1〉 ∨ · · · ∨ |ΨN 〉

=
1

N
∑
σ∈SN

|Ψσ(1)〉 ⊗ · · · ⊗ |Ψσ(N)〉 (1)

where N is the normalization factor and SN is the N permutation group. And the exterior (or antisymmetric)
tensor product ∧ is defined as

|Ψ1, · · · ,ΨN 〉 ≡ |Ψ1〉 ∧ · · · ∧ |ΨN 〉

=
1

N
∑
σ∈SN

(−1)σ|Ψσ(1)〉 ⊗ · · · ⊗ |Ψσ(N)〉 (2)

where (−1)σ is the signature of σ.

Then, Eqs. (1) and (2) correspond to the wavefunctions of N bosons and fermions respectively [14].
One can notice that the above definition directly connects states written in 1QL to those in SEA (see also
Ref. [20]). A closed subspace of H⊗N generated by |Ψ1〉 ∨ · · · ∨ |ΨN 〉 is denoted by H∨N in which N bosons
reside, and a closed subspace of H⊗N generated by |Ψ1〉 ∧ · · · ∧ |ΨN 〉 is denoted by H∧N in which N femions
reside. These two subspaces compose Fock spaces, which are algebraic constructions of single Hilbert space
for unfixed number of identical particles. The bosonic Fock space over H is defined as Fb(H) =

⊕∞
N=0H∨N

and the fermionic Fock space as Ff (H) =
⊕∞

N=0H∧N with the definition H0 = C. H0 is the Hilbert
space for the vacuum state |vac〉. We will see that |vac〉 plays an important role in the definition of PSSR
entanglement for fermions. From now on, “⊗±” will be used when the algebra can be any of the symmetric
and exterior tensor products.

Creation and annihilation operators (â†, â) are defined in SEA as follows [14]:

Definition 2. The creation operator â†(Ψ) from H⊗±N to H⊗±(N+1) is defined as

â†Ψ(|Ψ1〉 ⊗± · · · ⊗± |ΨN 〉) = |Ψ〉 ⊗± |Ψ1〉 ⊗± · · · ⊗± |ΨN 〉. (3)

The annihilation operator âΨ from H⊗±N to H⊗±(N−1) is defined with the concept of the interior product ·
as

âΨ(|Ψ1〉 ⊗± · · · ⊗± |ΨN 〉) ≡ 〈Ψ| · |Ψ1〉 ⊗± · · · ⊗± |ΨN 〉

=

N∑
i=1

(±1)i−1〈Ψ|Ψi〉|Ψ1〉 ⊗± · · · ⊗± (|Ψi〉)⊗± · · · ⊗± |ΨN 〉, (4)

where (|Ψi〉) in the last line means that the state |Ψi〉 is absent.

The relations of the above operators to the vacuum state |vac〉 are defined as

âΨ|vac〉 = 0, â†Ψ|vac〉 = |Ψ〉. (5)

Note that the commutation relations of creation and annihilation operators are given by

[âΨ, âΦ]± = 0, [âΨ, â
†
Φ]± = 〈Ψ|Φ〉 (6)
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where + (−) is the commutator (anticommutator) for bosons (fermions).

It is direct to generalize Eqs. (3) and (4) to multi-particle creation and annihilation. For example,

â†Ψ′ â
†
Ψ(|Ψ1〉 ⊗± · · · ⊗± |ΨN 〉) = â†Ψ′(|Ψ〉 ⊗± |Ψ1〉 ⊗± · · · ⊗± |ΨN 〉)

= |Ψ′〉 ⊗± |Ψ〉 ⊗± |Ψ1〉 ⊗± · · · ⊗± |ΨN 〉, (7)

etc. The n particle creation and annihilation processes correspond to the the following bilinear maps:

H⊗±N ×H⊗±n → H⊗±(N+n) (creation)

H⊗±N · H⊗±n → H⊗±(N−n) (annihilation) (8)

where × and · denote the outer and interior products.

Then the transition amplitude from a state |Ψ1, · · · ,ΨN 〉 to |Φ1, · · · ,ΦN 〉 can be derived from Definition 2
as

〈Φ1, · · · ,ΦN |Ψ1, · · · ,ΨN 〉 = 〈ΦN | ⊗± · · · ⊗± 〈Φ1| · |Ψ1〉 ⊗± · · · ⊗± |ΨN 〉

=

{
1
N 2Per[〈Φi|Ψj〉] for bosons
1
N 2Det[〈Φi|Ψj〉] for fermions

(9)

where Per and Det mean the permanent and determinant of a N ×N matrix with entries 〈Φi|Ψj〉.
It is worth emphasizing the difference between the LHS and the RHS of the first equality in Eq. (9). The

LHS denotes the transition amplitudes of the states that can be rewritten as 〈vac|âΦN
· · · âΦ1

â†Ψ1
· · · â†ΨN

|vac〉,
and the RHS denotes the interior product of the corresponding multilinear tensors. They are equal only
when two states have the same number of particles. As a simple example to show that the two algebras are
not identical in general, we consider (N,M) = (1, 2). Then

〈Φ1|Ψ1,Ψ2〉 = 〈vac|âΦ1
â†Ψ1

â†Ψ2
|vac〉 = 0, (10)

while

〈Φ1| · |Ψ1〉 ⊗± |ΨM 〉 = 〈Φ1|Ψ1〉|Ψ2〉 ± 〈Φ1|Ψ2〉|Ψ1〉, (11)

which is not zero in general.

One can find the same dot (·) product definition with Definition 2 in NLA [11] (without mentioning the
role of vacuum states). This algebraic identity supports that NLA is naturally obtained from 1QL with the
mathematical formularization of SEA. While Definition 2 just presents the mathematical concept of creation
and annihilation operators with SEA in the Fock space, a dot product in NLA is introduced to define the
partial trace of identical particles, i.e., a physical operation (the definition of identical particle partial trace
in NLA is given in Section 2.3 of this work). However, the identification of partial trace to the interior
product of SEA works only when the particles are bosons and obey the particle number superselection rule
(NSSR), which we will discuss in Section 2.3 after explaining the role of microcausality in nonlocality.

2.2 Microcausality and nonlocality

To obtain an operational framework for utilizable entanglement from identical particles, the concept of
spatially localized operations and classical communications (sLOCC) is introduced in Ref. [10, 11], which
states that the operations for sLOCC occur at restricted spatial regions. Considering that the spatial
regions correspond to local detectors (modes), this description implies that the extracted entanglement of
identical particles within the sLOCC framework is the mode entanglement (see Appendix A.2). This type
of entanglement generation process is similar to the detector-level entanglement introduced in Ref. [21].
Appendix A reviews the concept of particle and mode entanglements of identical particles.

A principal prerequisite to specify the entanglement of identical particles is to clarify the particles’
spatial relation to modes. Therefore, it presumes a spatial computational basis for quantifying entanglement,
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{|Xa〉}P≥2
a=1 , where Xa denote individual subsystems according to their spatial location (〈Xa|Xb〉 = δab). Then

any spatial wavefunction |ψi〉 is expressed as |ψi〉 =
∑
a ψ

a
i |Xa〉.

With this restriction, operators acting on a subsystems Xa is expressed as OXa =
∑
r,sO

rs
Xa
|Xa, r〉〈Xa, s|

(r and s denotes the possible internal degrees of freedom), which directly satisfies

[OXa
,OXb

] = 0, (a 6= b). (12)

The above commutation relation connects the entanglement of identical particles extracted under sLOCC to
those defined based on algebraic methods [5–8] (see, e.g., Proposition 1 of Ref. [6]).

The commutation relation Eq. (12) can be understood as a three-dimensional version of microcausality,
which means that operators acting on spacelike separated regions commute,

[OXa
(ta),OXb

(tb)] = 0 if (Xa −Xb)
2 − (ta − tb)2 < 0. (13)

Hence, sLOCC implies microcausality with given computational basis according to the spatial distribution of
subsystems (detectors, modes). And the separability conditions of identical particles emerge from the fixation
of a spatial computational basis and the presumption of microcausality. Since the separablity condition of
identical particles is not explicitly presented in Refs. [5–8], we provide that for bosons under the restriction
of particle number superselection rule (NSSR) [22,23] in Appendix B.

Another crucial role of microcausality is that the partity superselection rule (PSSR) for fermions [24–28]
is derived from the microcausality, which indicates that the entanglement of identical particles under the
restiction of SSR presumes microcausality.

2.3 The symmetrized partial trace of identical particles in SEA

One of important theoretical contributions of NLA to the entanglement of identical particles is to suggest
a concrete computational method to obtain the reduced density matrix of identical particle states [9–11].
In NLA, the definition of a partial trace of a state is based on the interior (dot) product [11] given in
Definition 2. By supposing that a complete basis of Xa is given by {|Φaq 〉}q with 〈Φap|Φaq 〉 = δpq, the partial
trace over a subsystem Xa of a state ρ =

∑
k pk|Ψk〉〈Ψk| (

∑
k pk = 1) is defined with the corresponding

identity matrix IXa
=
∑
q |Φaq 〉〈Φaq | as

TrXa(ρ) = TrXa(ρIXa) ≡
∑
q,k

pk〈Φaq | · |Ψk〉〈Ψk| · |Φaq 〉, (14)

where the operation · denotes the interior product (Eq. (4)).

On the other hand, for a definition of partial trace to be valid, it should satisfy the following conditions:

• C1) When a state of identical particles is local (all particles are in the same subsystem), the partial
trace of the state is just the trace and becomes 1 (a number, not an identity matrix).

• C2) When a pure state is nonlocal and separable, the obtained reduced density matrix becomes a pure
state.

And we can directly check that the definition of the partial trace Eq. (14) does not meet the above conditions
in general. Actually, it is a valid definition only when the particles preserve the NSSR restriction.

First, we show that the definition of partial trace as Eq. (14) meets C1 and C2 when the particles preserve
NSSR. For this case, the basis of a subsystem Xa is set to be {|Φaq(n)〉}q (〈Φap(n)|Φ

a
q(n)〉 = δpq) where (n)

denotes that they are all n-particle states. The identity matrix for Xa is given by I(n)
Xa

=
∑
q |Φaq(n)〉〈Φ

a
q(n)|.

Then, for an arbitary n-particle Xa-local state
∑
r ψ

r|Φar(n)〉 (
∑
r |ψr|2 = 1), the trace is given by∑

q

〈Φaq(n)|
(∑
r,s

ψrψs∗|Φar(n)〉〈Φ
a
r(n)

)
|Φaq(n)〉 =

∑
q,r,s

δqrδrqψ
rψs∗ = 1. (15)
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By convex roof extention, Eq. (14) also satisfies C1 for mixed local states with NSSR. And, since it is direct
to see that the reduced density matrix of an arbitary separable state Eq. (B.1) is pure, C2 is also satisfied.

Second, we show that Eq. (14) does not meet either C1 or C2 in general (without NSSR). Suppose
that the bosons have two internal degrees of freedom, ↑ and ↓. We consider two simple boson states,
â†Xa,↑â

†
Xa,↓|vac〉 ≡ | ↑, ↓〉Xa

and 1√
2
(â†Xa,↑)

2â†
X̄a,↓
|vac〉 ≡ | ↑, ↑〉Xa

∨| ↓〉X̄a
(here X̄a is the complement system

of Xa). Since NSSR is not preserved now, the trace of a local state | ↑, ↓〉Xa
is given from Eq. (14) by

TrXa | ↑, ↓〉〈↑, ↓ |Xa =〈↑ | · | ↑, ↓〉〈↑, ↓ | · | ↑〉Xa + 〈↓ | · | ↑, ↓〉〈↑, ↓ | · | ↓〉Xa + 〈↑, ↓ | · | ↑, ↓〉〈↑, ↓ | · | ↑, ↓〉Xa

=| ↑〉〈↑ |Xa + | ↓〉〈↓ |Xa + 1, (16)

which is a nonsensical result, and does not satisfy C1. And a similar computation show that the partial
trace of a separable state | ↑, ↑〉XA

∨ | ↓〉X̄a
is not pure, i.e., C2 is not satisfied, either.

Therefore, we need to remedy the partial trace definition of identical particles Eq. (14) to obtain the
partial trace that satisfies C1 and C2 for all the possible situations. To achieve our goal, we introduce a new
type of operation, which we name the local inner product :

Definition 3. The local inner product (denoted as ◦) is a linear operation defined as a projection between
a local state |Φ〉 on a subsystem Xa and a possibly nonlocal state |Ψ〉 on H. If |Ψ〉 is written as |Ψ〉 =∑
q ψq|Ψ′q〉Xa⊗± |Ψ′′q〉X̄a

(|Ψ′′a〉X̄a
is an arbitrary state on the complementary system X̄a and

∑
q |ψq|2 = 1),

〈Φ| ◦ |Ψ〉 is defined as

〈Φ| ◦ |Ψ〉 =
∑
q

〈Φ|Ψ′q〉Xa
|Ψ′′〉X̄a

. (17)

Since the local inner product is linear, Eq. (17) can be directly extended to the projection of arbitrary
nonlocal states. Note that this definition is possible only after the specification of subsystems {Xa, X̄a} for
the nonlocality; hence, the microcausality is prerequisite for defining the local inner product.

By employing Definition 3, the partial trace that satisfies C1 and C2 is defined as follows:

Definition 4. For the identity matrix IXa
=
∑
q |Φaq 〉〈Φaq | of a subsystem Xa, the partial trace over Xa for

a state ρ =
∑
k pk|Ψk〉〈Ψk| (

∑
k pk = 1) in H is defined as

TrXa
(ρ) =

∑
q,k

pk〈Φaq | ◦ |Ψk〉〈Ψk| ◦ |Φaq 〉. (18)

In Eq. (17), 〈Φ|Ψ′〉 can be 〈Φ| · |Ψ′〉 when the particle numbers of |Φ〉 and |Ψ′〉 are equal. Hence, for
bosons with NSSR, the above definition becomes equivalent to Eq. (14) of NLA.

By Definition 4, the trace of an arbitrary local state |Ψ〉Xa =
∑
q ψq|Φaq 〉 (

∑
q |ψq|2 = 1) in Xa is given

by

TrXa
(|Ψ〉〈Ψ|) =

∑
p,q,r

ψqψ
∗
r 〈Φap| ◦ |Φaq 〉〈Φar | ◦ |Φap〉Xa

=
∑
p,q,r

ψqψ
∗
r 〈Φap|Φaq 〉〈Φar |Φap〉Xa

= 1, (19)

which shows that Definition 4 satisfies C1. We can see that C2 is satisfied for Definition 4 by inserting
|Ψ′q〉Xa

⊗± |Ψ′′q〉X̄a
into Eq. (18). Therefore, we see that the partial trace of identical particles as Definition 4

is suitable for deriving a reduced density matrix of identical particles for the most general case.

3 Entanglement of fermions

As we have briefly explained at the end of Sec. 2.2, the microcausality renders one to conceive the PSSR-
preserving entanglement among local regions. In this section, we investigate the entanglement of fermions
with PSSR in bipartite systems. The partial trace technic by Definition 4 is employed to quantify the
entanglement. We show that PSSR permits the fermions to have more entanglement than bosons with
NSSR.
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3.1 The separability conditions of fermions with PSSR

According to the exclusion principle of fermions, the maximal total fermion number max(N) is determined
by the spatial subsystem number P and the internal degrees of freedom S, i.e., max(N) = PS.

Before presenting the separablity condition of fermions for the general case, we first consider the simplest
case, i.e., a bipartite spin half fermion system (max(N) = 4) with the two spatial subsystems (X,Y ) and
internal spin states (↑, ↓). By PSSR, we treat even and odd parity states distinctively. The most general
form for a separable total state of even parity |Ψeven〉 is given by

|Ψsep
even〉 = α

(
(
∑
s1=↑,↓

αs1 |s1〉)X ∧ (
∑
s2=↑,↓

αs2 |s2〉Y )
)

+ β
(

(p|vac〉X + q| ↑, ↓〉X) ∧ (r|vac〉Y + s| ↑, ↓〉Y )
)

(20)

(|α|2 + |β|2 = |p|2 + |q|2 = |r|2 + |s|2 =
∑
s1
|αs1 |2 =

∑
s2
|αs2 |2 = 1). Here the total vacuum state |vac〉 is

expressed in the local form as |vac〉X ∧ |vac〉Y and |X, ↑〉 ∧ |X, ↓〉 ≡ | ↑, ↓〉X , etc. Note that, since PSSR is
conserved not only in the total system but also in each subsystem, the two terms in the RHS of Eq. (20) can
not superpose from the viewpoint of local observers in X and Y . Similarly, an odd fermion state |Ψodd〉 is
separable when it has the form

|Ψsep
odd〉 =α

[∑
s1

αs1 |s1〉X ∧
(
p|vac〉Y +

∑
s2,s3

µs2s3 |s2, s3〉Y
)]

+ β
[(
q|vac〉X +

∑
s4,s5

νs4s5 |s4, s5〉X
)
∧
∑
s6

αs6 |s6〉Y
]

(21)

(|α|2 + |β|2 =
∑
s1
|αs1 |2 = |p|2 +

∑
s2,s3
|µs2s3 |2 = |q|2 +

∑
s4,s5
|µs4s5 |2 =

∑
s6
|αs6 |2 = 1).

The generalization to the bipartite system with an arbitrary internal S states (0, 1, · · · , S−1) is straight-
forward. A set of fermions that spread over two subsystems X and Y with internal S states are separable if
and only if the total state |Ψsep〉 (= |Ψsep

even〉+ |Ψsep
odd〉) is given by

|Ψsep
even〉 =α

( [ S−1
2 ]∑

k=0

∑
s1,··· ,s2k+1

as1···s2k+1
|s1, · · · , s2k+1〉X

)
∧
( [ S−1

2 ]∑
k=0

∑
s1,··· ,s2k

bs1···s2k+1
|s1, · · · , s2k+1〉Y

)

+ β
( [ S2 ]∑
k=0

∑
s1,··· ,s2k

cs1···s2k |s1, · · · , s2k〉X
)]
∧
( [ S2 ]∑
k=0

∑
s1,··· ,s2k

ds1···s2k |s1, · · · , s2k〉Y
)

(22)

([K] for a positive real number K is the the biggest integer among smaller integers than K) and

|Ψsep
odd〉 =α

( [ S−1
2 ]∑

k=0

∑
s1,··· ,s2k+1

as1···s2k+1
|s1, · · · , s2k+1〉X

)
∧
( [ S2 ]∑
k=0

∑
s1,··· ,s2k

bs1···s2k |s1, · · · , s2k〉Y
)

+ β
( [ S2 ]∑
k=0

∑
s1,··· ,s2k

cs1···s2k |s1, · · · , s2k〉X
)
∧
( [ S−1

2 ]∑
k=0

∑
s1,··· ,s2k+1

ds1···s2k+1
|s1, · · · , s2k+1〉Y

)
(23)

with the definition ∑
s1,··· ,s2k

as1···s2k |s1, · · · , s2k〉
∣∣∣
k=0

= a0|vac〉 (24)

(each complex coefficients of wavefunctions in Eqs. (22), (23), and (24) are set to satisfy the normalization
conditions).

In Eq. (22), the first line is the exterior product of two even local states, while the second is that of two
even local states. In Eq. (23), the first line is the exterior product of an odd local state in X and an even
local state in Y , while in the second line the parities of X and Y are reversed. We can directly see that
Eqs. (22) and (23) correspond to Eqs. (20) and (21) respectively when S = 2.
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Figure 1: N dentical particles projected in a bipartite system. N identical particles with spatial wave
functions (ψ1, ψ2, · · · , ψN ) are detected by two distinguishable subsystems (modes) X and Y , which fix the
computational basis as {|X〉, |Y 〉}.

3.2 Reduced density matrix and von Neumann entropy of fermions

We can apply the above observation to the case when N fermions spread over space are observed by two
distinguishable detectors X and Y (Fig. 1), which is discussed for bosons in Ref. [10, 12], i.e.,

|Ψ〉 = ∧Ni=1|Ψi〉 = ∧Ni=1(ri|X, si〉+ li|Y, si〉) (25)

with |ri|2 + |li|2 = 1 for all i. This state is separable when |Ψ〉 is of the form (22) for an even N or (23)
for an odd N . Here we derive the reduced density matrix of the fermions, by which we can compute the
entanglement entropy of the system.

We first consider the simplest example, i.e., N = S = 2 (si =↑ or ↓). For this case, the even and odd
identity matrices of the subsystem X are given by

IevenX = |vac〉〈vac|X + | ↑, ↓〉〈↓, ↑ |X , IoddX = | ↑〉〈↑ |X + | ↓〉〈↓ |X . (26)

The wave function is written from Eq. (25) with N = 2 as

|Ψ〉 =
(
r1r2| ↑, ↓〉X ∧ |vac〉Y + l1l2|vac〉X ∧ | ↑, ↓〉Y

)
+
(
r1l2| ↑〉X ∧ | ↓〉Y − l1r2| ↓〉X ∧ | ↑〉Y

)
(27)

By using Eq. (26) and Definition 4, we can obtain two reduced density matrices according to the parity of

the subsystem Y . The measurable reduced density matrix ρ
(m)
Y at Y is given by

ρ
(m)
Y = pevenρevenY + poddρoddY (28)

where

ρevenY =
|r1r2|2|vac〉〈vac|Y + |l1l2|2| ↑, ↓〉〈↓, ↑ |Y

|r1r2|2 + |l1l2|2
, ρoddY =

|r1l2|2| ↓〉〈↓ |Y + |l1r2|2| ↑〉〈↑ |Y

|r1l2|2 + |l1r2|2
,

peven = |r1r2|2 + |l1l2|2, podd = |r1l2|2 + |l1r2|2. (peven + podd = 1) (29)

Then the total entanglement entropy E(ρ
(m)
Y ), which is defined as

E(ρ
(m)
Y ) ≡ pevenE(ρevenY ) + poddE(ρoddY ),

(E(ρevenY ) = −TrY [ρevenY log ρevenY ], E(ρoddY ) = −TrY [ρoddY log ρoddY ]) (30)

is given by

E(ρ
(m)
Y ) =− |r1r2|2 log

[ |r1r2|2

|r1r2|2 + |l1l2|2
]
− |l1l2|2 log

[ |l1l2|2

|r1r2|2 + |l1l2|2
]

− |r1l2|2 log
[ |r1l2|2

|r1l2|2 + |l1r2|2
]
− |l1r2|2 log

[ |l1r2|2

|r1l2|2 + |l1r2|2
]
. (31)

The state is unentangled when one of (r1, r2, l1, l2) is zero. A noteworthy difference from the bosonic case
is that the maximal E(ρent) is given when |r1| = |r2| = |l1| = |l2| = 1√

2
by 1, which is twice bigger than

8



Figure 2: Entanglement entropy of 2 fermions according to the variation of spatial coherence. The maximal
value of the entropy is 1, which is twice bigger than that of the 2 boson entropy.

maximal E(ρent) for the bosonic case (Fig. 2, compare Eq. (B.10) of Appendix B). This is by the fact that the
vacuum state composes the basis of even parity state as seen in Eq. (26). We can generalize this quantitative
feature to an arbitrary N -fermion case Eq. (25) as the following theorem.

Theorem 1. When N ≤ S, the maximal entropy of identical fermions in bipartite subsystems is given by
N − 1.

Proof. An N fermion state measured by two detectors at X and Y is expressed as

|Ψ1〉 ∧ |Ψ2〉 ∧ · · · ∧ |ΨN 〉
=
(
l1|X, s1〉+ r1|Y, s1〉

)
∧ · · · ∧

(
lN |X, sN 〉+ rN |Y, sN 〉

)
. (32)

By expanding the above equation according to the particle number per mode, we have

|Ψ1〉 ∧ |Ψ2〉 ∧ · · · ∧ |ΨN 〉

=
( N∏
i=1

ri

)
|vac〉X ∧ |s1s2 · · · sN 〉Y +

∑
i

(−1)i−1 li
ri

( N∏
j=1

rj

)
|si〉X ∧ |s1s2 · · · (si) · · · sN 〉Y

+
∑
i<j

(−1)i+j−1 lilj
rirj

( N∏
j

rj

)
|sisj〉X ∧ |s1 · · · (si) · · · (sj) · · · sN 〉Y + · · ·+

( N∏
j

lj

)
|s1s2 · · · sN 〉X ∧ |vac〉Y ,

(33)

where (ri) means that it is absent in the ket. By defining (N − n, n) as the summation of states with N − n
fermions in X and n fermions in Y , Eq. (33) is rewritten as

|Ψ1〉 ∧ |Ψ2〉 ∧ · · · ∧ |ΨN 〉 = (N, 0) + (N − 1, 1) + (N − 2, 2) + · · ·+ (0, N)

=
[
(N, 0) + (N − 2, 2) + (N − 4, 4) + · · ·

]
+
[
(N − 1, 1) + (N − 3, 3) + · · ·

]
. (34)

By PSSR, we can see that a term in the first bracket of the second line of Eq. (32) cannot superpose with a
term in the second bracket according to their local parity.

Each (N − n, n) has
(
N
n

)
terms, by which the numbers of the terms in each group are equal. The state

is maximally entangled when |li| = |ri| = 1√
2

for all i, which makes the absolute value of all the amplitudes

2−N/2. By combining all these facts, the PSSR-preserving entanglement entropy of bipartite N fermions is
given by

−2× 1

2
(

1

2N−1
log
[ 1

2N−1

]
× 2N−1) = N − 1. (35)
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This monotonic increase of maximal entanglement along the particle number is absent in the bosonic
case (see Appendix B), which is because PSSR permits more fermionic terms to superpose.

The discussion so far has shown that the quantum non-locality of identical particles can be analyzed in a
very similar manner to that of non-identical particles with the definition of partial trace (Definition 4). In the
next section, we will show the factorizability condition of identical particle Hilbert space by microcausality,
by which the optimization of identical particle states is possible for the quantification of entanglement.

4 Factorization of Hilbert space

Once particles are grouped by their locations, quantifying the physically tangible entanglement of identical
particles seems to follow the same process with the non-identical particle case. For example, observing the
bosonic state (B.1), the symmetric tensor product ∨ between |ΨX

n 〉 and |ΨY
N−n〉 plays the role of the direct

tensor product ⊗ in non-identical particle systems. Definition (3) of the local inner product also shows that
⊗± works the same as ⊗ under the restriction of microcausality.

Here we show that this correspondence is not a coincidence and the (anti-) symmetric products ⊗±
can be replaced with ⊗. In other words, the Hilbert space of identical particles are factorizable as that of
non-identical particles. The factorized Hilbert spaces of identical particles are, however, not particle Hilbert
spaces but local Hilbert spaces, in which each local subsystem corresponds to a Hilbert subspace that con-
structs the total Hilbert space. The following theorem clearly states the factorizability of the local Hilbert
space.

Theorem 2. If identical particles spread over two subsystems X and Y , and the subsystems are spatially
distinguishable, then the total Hilbert space is fatorized as HX ⊗HY .

Proof. To proof the factorizability of the bipartite state with identical particles, we employ the concept of
quantum causality introduced in Ref. [15]. It was shown in the work that a Hilbert space H is factorizable
into two Hilbert space, i.e., H = HX ⊗HY if and only if the system has the quantum causality (Lemma 4
of Ref. [15]. Therefore, if the system of identical particles is quantum causal, then the Hilbert space of the
identical particles is factorizable as H = HX ⊗HY .

First, we briefly explain what the quantum causality is. Assume that Xabier is in X and Yoko is in Y .
Xabier can choose a measurement operation x and produce a datum q, and Yoko can choose y and produce
r. If they can compare their results after obtaining sufficiently many data, they can estimate the set of
probability distributions {P (q, r, |x, y)} for all possible (q, r, x, y). Then, the notion of quauntum causality
is defined as follows [15]:

Definition 5. P (q, r|x, y) is quantum causal if there exist a Hilbert space HY , projector operators {F yr :∑
r F

y
r = IY }, and a set of subnormalized quantum states {σxq } (a possible state of Yoko when Xabier

activates x and produces q) such that

P (q, r|x, y) = Tr(F yr σ
x
q ),

∑
q

σxq = σ. (36)

Here σ is independent of x.

Hence, the statement that Yoko’s system is quantum causal means that it is independent of Xabier’s
system and also compatible with quantum mechanics.

And, it is not hard to see that the quantum system of identical particle is quantum causal. For a given
state |Ψ〉 (∈ H), a subnormalized state of Yoko corresponding to the data q of Xabier is obtained from
Definition 3 and 4, i.e,

σxq = 〈ΦXq | ◦ |Ψ〉〈Ψ| ◦ |ΦXq 〉. (37)
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Figure 3: When the subsystems X and Y are distinctive, or more rigorously speaking, spacelike separated,
the total Hilbert space HX ⊗± HY is equivalent to HX ⊗ HY . In other words, the total Hilbert space of
identical particles is factorizable according to the local distribution of subsystems.

We know that
∑
q σ

x
q is the partial trace of |Ψ〉 that is independent of the basis choice in X. And P (q, r|x, y)

is computed from Eq. (37) as Eq. (36). Thus, the system of identical particles is quantum causal.

In conclusion, as we have mentioned at the beginning of the proof, the Hilbert space of identical particles
is factorizable by the quantum causality.

With Theorem 2, we can write a N -particle state, e.g.,

|X, s1〉 ⊗± · · · ⊗± |X,sn〉 ⊗± |Y, sn+1〉 ⊗± · · · ⊗± |Y,sN 〉 (38)

in a factorized form

|s1, · · · , sn〉X ⊗ |sn+1, · · · , sN 〉Y (39)

(see Fig. 3).

Theorem 2 is closely related to Tsirelson’s theorem [29], which shows that a quantum system with a
factorized Hilbert space is equivalent to a system with two sets of commuting projection operators in a
finite-dimensional Hilbert space. Theorem 2 can be applied to the entanglement problems of quantum fields
with identical particles. If each region is supposed to separate far enough from each other, the factorization
property of Hilbert space is still valid in quantum fields. On the other hand, if the sub-regions are adjacent
to each other, one should cautiously consider the boundary effect.

The practical advantage of factorizing identical particles’ Hilbert spaces is that it makes simpler the
derivation of several non-local properties in identical particles’ systems. It will become clear by seeing the
identical particle version of the GHJW theorem and the CHSH inequality violation in the following discussion.

4.1 GHJW theorem of identical particles

Here we see how an entangled state of identical particles can raise a nonlocal phenomenon by delving into
the GHJW theorem [18,19], by which any purifications of mixed states on the extended system should have
a specific local unitary relation. We show that the theorem is still valid with states of identical particles.
Even if we focus on the bosonic case here, its extension to the fermionic case is straightforward.

Lemma 1. Suppose that |Ψ〉 and |Ψ′〉 are N -boson vectors in H∨N so that n particles locate in X. If
TrY |Ψ〉〈Ψ| = TrY |Ψ′〉〈Ψ′|, then there exists a unitary operation in the system U = IX ⊗ UY that satisfies
|Ψ〉 = U |Ψ′〉.

Proof. The reduced density matrix can be written as

TrY |Ψ〉〈Ψ| = TrY |Ψ′〉〈Ψ′| =
∑
~s

w~s|~s〉〈~s|X (40)

where ~s = (s1, · · · , sn). For any complete orthonormal basis set {~r = (r1, · · · , rN−n)} of Y , we can write
|Ψ〉 as

|Ψ〉 =
∑
~s,~r

ψ~s,~r|~s〉X ⊗ |~r〉Y (41)
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using Theorem 1. By defining |~s〉Y =
∑
~r ψ~s,~r|~r〉Y , Eq. (41) is given by

|Ψ〉 =
∑
~s

|~s〉X ⊗ |~s〉Y . (42)

Combining Eqs. (40) and (41), we obtain 〈~s|~t〉Y = δ~s,~tw~s. Hence, by defining an orthonormal set {|ŝ〉Y ≡
|~s〉Y /

√
w~s}~s, |Ψ〉 is finally written as

|Ψ〉 =
∑
~s

√
w~s|~s〉X ⊗ |ŝ〉Y (43)

The dimension difference of HX and HY is not a problem here. When dimHX 6= dimHY , the number of
zero eigenvalues of TrX |Ψ〉〈Ψ| and TrY |Ψ〉〈Ψ| differ so that the nonzero eigenvalue numbers become equal.
Applying the same process, |Ψ′〉 can be expressed with another orthonormal set {ŝ′}~s as

|Ψ′〉 =
∑
~s

√
w~s|~s〉X ⊗ |ŝ′〉Y . (44)

Then the two orthonormal bases {|ŝ〉Y } and {|ŝ′〉Y } are connected by a unitary tranformation UY ≡∑
~s |ŝ〉〈ŝ′|X , by which |Ψ〉 and |Ψ′〉 are connected by

|Ψ〉 = (IX ⊗ UY )|Ψ′〉 ≡ U |Ψ′〉. (45)

Using the above lemma, any |Ψ′〉 that satisfies ρX = TrY |Ψ〉〈Ψ| can be transformed to |Ψ〉 =
∑
~s

√
wa|~s〉X⊗

|~s〉Y , which results in the GHJW theorem of bosons:

Theorem 3. (GHJW theorem for identical particles) Suppose N bosons locate in two orthogonal subsystems
X and Y with internal states si (i = 1, · · · , N). The total state of the bosons |Ψ〉 is a vector in H∨N ≡
H∨n ⊗ H∨(N−n) with ρX = TrY |Ψ〉〈Ψ|. For any convex summation form of ρX =

∑
a wa|Ψa

(n)〉〈Ψ
a
(n)|X

(wa ≥ 0, ∀a), there exists an orthonormal set {|Ψa
n〉}a of the subsystem X such that

|Ψ〉 =
∑
a

√
wa|Ψa

n〉X ⊗ |Ψa
(N−n)〉Y . (46)

This theorem shows that an observer at Y can choose the state of X by performing a measurement and
sending the result to an observer at X, hence the total system is non-local.

4.2 Bell inequality violation with bipartite two fermions

As another exemplary phenomenon of nonlocality that arises from the entanglement of identical particles,
we discuss the maximal violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality [30], a standard
example of Bell inequalities (BI). Even though several types of entangled states can generate the violation of
the CHSH inequality, here we focus on the bipartite two-level fermionic system and show that a superposition
of the vacuum and two fermions can violate the inequality. As already mentioned, the factorizability of
bipartite systems is used for the manifest verification of the relations.

To discuss BI including the CHSH inequality, we assume the independence of two systems X and Y and
a local hidden variable λ (∈ Λ) that determines the probabilities for the subsystems to output data. Thus
for any datum ax from any measurement operation x of X, we obtain a probability function fX(ax, λ). By
denoting the probablity measure on Λ as M , the probability distribution is computed as P (ax, by|x, y) =∫
M(dλ)fX(ax, λ)fY (by, λ).

For the case of CHSH inequality, ax and by have two valued observables, i.e., +1 and −1. Then the
mean values of ax and by for a given λ is denoted as 〈ax(λ)〉 = fX(+1x, λ) − fX(−1x, λ) and 〈b(λ)〉 =
fY (+1x, λ) − fY (−1x, λ) (−1 ≤ 〈ax(λ)〉 ≤ 1 and −1 ≤ 〈by(λ)〉 ≤ 1). The correlation function is written
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as 〈ax, by〉 =
∫
M(dλ)〈ax〉〈by〉ρ. We consider the correlation bound for the two different setting for each

detector, i.e, x = 1, 2 and y = 1, 2. The CHSH inequality can be derived using the inequality 〈aτ1τ2〉 ≡
1
4 〈(1 + τ1a1)(1 + τ2a2)〉 ≥ 0 (τi ∈ {+,−}) as

E(a, b) ≡
∣∣〈a1, b1〉+ 〈a2, b1〉+ 〈a1, b2〉 − 〈a2, b2〉

∣∣
=
∣∣〈a1 + a2, b1)〉+ 〈a1 − a2, b2〉

∣∣
= 2
∣∣〈a++, b1〉 − 〈a−−, b1〉+ 〈a+−, b1〉 − 〈a−+, b2〉

∣∣
≤ 2〈a++ + a−− + a+− + a−+, I〉 = 2, (47)

where the last inequality is from the relation |〈aτ1τ2 , bj〉| ≤ 〈aτ1τ2 , I〉.
For the existence of quantum correlation with Hermitian observables, one can show that the Bell inequality

is maximally violated when E(a, b) = 2
√

2 (see, e.g., Ref. [31]). This maximal violation can be achieved in
the bipartite spin half fermionic system when the fermion state is given by

|Ψeven
− 〉 =

1√
2

(
|vac〉X ⊗ | ↑, ↓〉Y − | ↑, ↓〉X ⊗ |vac〉Y

)
. (48)

The above state can be obtained from a two fermion state prepared in a system Z

|Ψ〉 = | ↑, ↓〉Z , (49)

which evolves so that the fermions arrive at the systems X and Y in the following form,

|Ψ〉 = |ψ1, ↑〉 ∧ |ψ2, ↓〉 (50)

with ψ1 = 1√
2
(X − Y ) and ψ2 = 1√

2
(X + Y ). From PSSR, we can obtain an even-parity fermionic state

Eq. (48) with probability 1/2.

Considering that |vac〉 and | ↑, ↓〉 are the only two possible independent states per subsystem in this
setup (note that the antisymmetric state | ↑, ↓〉 is invariant under any unitary operation), |Ψeven

− 〉 is one of
fermionic Bell-like states. In this basis, we can construct three Pauli matrices as follows:

σ1 =
(
|vac〉〈↑, ↓ |+ | ↑, ↓〉〈vac|

)
, σ2 =

(
−i|vac〉〈↑, ↓ |+ i| ↑, ↓〉〈vac|

)
, σ3 =

(
|vac〉〈vac| − | ↑, ↓〉〈↑, ↓ |

)
,

(51)

and ~σ · n̂ =
∑3
j=1 σj n̂j for an arbitrary three-dimensional unit vector n̂.

Then, by setting

a1 = (~σ · n̂)X ⊗ IY , a2 = (~σ · m̂)X ⊗ IY , b1 = IX ⊗ (~σ · n̂′)Y , b2 = IX ⊗ (~σ · m̂′)Y (52)

(⊗ comes from Theorem 1) so that the unit vectors (~n, ~m,~n′, ~m′) satisfy n̂·n̂′ = m̂·n̂′ = m̂·m̂′ = −n̂·m̂′ = 1√
2
,

the maximal Bell inequality violation is obtained, i.e.,

|〈Ψeven
− |(a1b1 + a2b1 + a2b2 − a1b2)|Ψeven

− 〉| = 2
√

2. (53)

5 DISCUSSIONS

By employing SEA and microcausality, we have suggested a theoretically rigorous method to quantify any
type of identical particles’ entanglement, which corrects the algebraic relation for the definition of partial
trace in the no-labeling approach (NLA). In this formalism, the total Hilbert space can be factorized according
to the location of the particles. In addition, some non-local properties that are seemingly hard to quantify
with identical particles, such as the GHJW theorem and BI violation, are handily analyzed.

Possible applications of our current work are diverse. For example, Ref. [32] theoretically and experimen-
tally verified the quantitative relation of identical particle’s entanglement to particle indistinguishability and
spatial overlap, in which the partial trace technique based on SEA is used. We expect similar experiments
with a larger number of bosons or fermions are possible. It is also an intriguing development to establish
a rigorous quantum resource theory of identical particles (see Ref. [33] for related research for the bosonic
case) and apply it to more general field-theoretic systems.
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A Particle entanglement and mode entanglement

The exchange symmetry and the Hilbert space non-factorizability of identical particles raise the question of
specifying subsystems. According to the elements of subsystems that compose the total system, the entan-
glement of identical particles can be the particle entanglement or the mode entanglement. The imposition of
different elements to subsystems corresponds to different quantification of entanglement. Here we explain the
concepts of particle entanglement and mode entanglement and how they are related at the level of detectors.

A.1 Particle entanglements

Particle entanglement identifies particles as subsystems. Since each particle is considered a subsystem, this
definition implies that the total system preserves the particle number N , with N = (number of particles) =
(number of subsystems). Here we suppose there are N identical particles in a pure state |Ψ1〉 ⊗± |Ψ2〉 ⊗±
· · · ⊗± |ΨN 〉 (Eqs. (1) and (2)).

What can we say about the entanglement of this state? First of all, one can consider the superposition of
the particles originated from the exchange symmetry as an entanglement (Ref. [33–35]). For example, when
N = 2, the identical particle state |Ψ1〉 ⊗± |Ψ2〉 is written in 1QL by

|Ψ1〉 ⊗± |Ψ2〉 =
1√
2

(
|Ψ1〉A ⊗ |Ψ2〉B ± |Ψ2〉A ⊗ |Ψ1〉B

)
. (A.1)

Here A and B are particle labels, which we explicitly write to clarify the particle subsystems. If A and
B are considered subsystems, Eq. (A.1) is an entangled state because it cannot be expressed as a tensor
product wave function. Since no physical detector can address individual particles (A and B are hence
called “pseudolables”), this type of particle entanglement is usually considered artificial entanglement, just
dependent on the mathematical form to express identical particles. However, Ref. [33–35] suggested some
protocols to extract this mathematical entanglement into detectable subsystems. These results show that
the particle identity is a kind of quantum resource that can be transferred to the mode entanglement.

Nevertheless, it is still true that one can discuss the actual entanglement only after discarding this
artificial entanglement. Ghiradi et al. [36] proposed the concept of Slater number for such a discrimination.
According to this criterion, a state is not entangled when it can be expressed as the (anti-) symmetric form
under the particle label exchange. For example, a state of Eq. (A.1) is separable because it is totally (anti-)
symmetric. One can directly see that SEA reveals such a property very clearly since every state expressed
in SEA inherently discards the superposition of wavefunctions from the exchange symmetry.

A.2 Mode entanglements

On the other hand, mode entanglement identifies spatial modes as subsystems. Orthogonal states that
compose bases of the local Hilbert spaces is described by the particle number and the possible internal
degrees of freedom. 2QL is usually suitable for describing this type of entanglement. Supppose N particles
can be found in two independent spatial modes X and Y with no internal degree of freedom. Then a pure
state |(N − n)X , nY 〉 is mode-separable while 1√

2
(|(N − n)X , nY 〉 + |(N − m)X ,mY 〉) (n 6= m) is mode-

entangled. It should be noted that the criterion for the separability of modes changes when the identical
particles follow superselection rules [16,17,26,27,37].

The mode entanglement is physically extractable entanglement because detectors have access to each
mode that is a distinguishable subsystem [38]. Moreover, it is proper to state that all the possible genuine
entanglements that physical observers can extract are mode entanglements.
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However, the definition of mode entanglement gives rise to a puzzle when single-particle states are con-
sidered. Let us suppose that a particle can be found in two modes X and Y . Then a state

1√
2

(â†X |vac〉+ â †Y |vac〉) =
1√
2

(|1X , 0Y 〉+ |0X , 1Y 〉), (A.2)

is mode-entangled, while it is not particle-entangled since it can be written in SEA and 1QL as

1√
2

(|X〉+ |Y 〉). (A.3)

Ref. [37] proposes a method to overcome this confusion with the imposition of the superselection rule to
states.

A.3 Conversion of particle entanglement to mode entanglement

An essential property of particle entanglement explained in Sec. A.1 is that it entirely depends on the formal
structure of wave functions, by which the authors of Ref. [21] called it “a priori entanglement”. It is pointed
out in Ref that this criterion is valid only when each particle is unambiguously assigned to one of detectors,
i.e., a particle in Ψ1 is always observed by the detector L and the other in Ψ2 by the detectors R.

On the other hand, if Ψ1 and Ψ2 are spatially ambiguous, Eq. (A.1) is no more a definitely separable
state. Consider the case when the particles can be observed at both detectors, which is mathematically
described as

|Ψi〉 = |ψi, si〉 = ri|R, si〉+ li|L, si〉 (i = 1, 2) (A.4)

where ri and li are complex numbers that satisfy |ri|2 + |li|2 = 1. The above relation is determined by the
relation of particles to detectors (spatial modes), which can be quantified as the spatial coherence [12]. Now
the two identical particles that is actually detected are in the form

r1r2|R, s1〉 ⊗± |R, s2〉+ +l1l2|L, s1〉 ⊗± |L, s2〉+ r1l2|R, s1〉 ⊗± |L, s2〉+ l1r2|L, s1〉 ⊗± |R, s2〉, (A.5)

which is an entangled state at the level of detectors (or modes) [10,12,21,32]. This discussion shows that the
nonlocality of identical particles cannot be read off just by looking into the wave functions. Particle identity
and spatial coherence combine to generate genuine entanglement, and the final entanglement is obtained in
the form of mode entanglement.

B NSSR-preserving entanglement of bosons

Suppose that there exist two systems X and Y that locate far from each other and have never exchanged
any information, therefore separated. Over X spread n identical bosons and over Y spread (N −n) identical
bosons. Each boson has an internal degree of freedom si with i = 1, · · · , S. Then, in the SEA formalism, a
separable N boson state is written in the most general form as

|Ψsep
N 〉 =(

∑
a

ψaX |X, sa1〉 ∨ · · · ∨ |X, san〉) ∨ (
∑
b

ψbY |Y, sbn+1〉 ∨ · · · ∨ |Y, sbN 〉)

≡|ΨX
n 〉 ∨ |ΨY

N−n〉, (B.1)

where ψaX and ψbY are complex numbers for the wave function normalization. One can see that |Ψsep
N 〉 is

separable with respect to the systems X and Y , because |ΨX
n 〉 and |ΨY

N−n〉 can be prepared in each system
independently. Indeed, using Definition 2, |Ψsep

N 〉 is prepared with creation operators as

|Ψsep
N 〉 =

(∑
a

ψaX â
†(X, sa1) · · · â†(X, san)

)(∑
b

ψbY â
†(Y, sbn+1) · · · â†(Y, sbN )

)
|vac〉

≡ â†
(
ΨX
n

)
â†
(
ΨY
N−n

)
|vac〉, (B.2)
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Figure 4: An example of a tripartite system with bosons. While the subsystems X and Y have the potential
to be correlated to each other, Z is insulated to the other subsystems (included in the outer world). In this
case, we only need to examine the nonlocality between two subsystems X and Y , and the total system is
considered X ∪ Y . The relation of X ∪ Y with Z is represented as the symmetric product ∨, which we do
not care about as long as no history of physical interaction between X ∪ Y and Z exists.

where [â†
(
ΨX
n

)
, â†
(
ΨY
N−n

)
] = 0.

This expression is powerful when we consider the third system that has l identical bosons in a state |ΨZ
l 〉

with no interaction to X and Y (Fig. 4). Even if the total state then can be rewritten as |ΨX
n 〉∨|ΨY

N−n〉∨|ΨZ
l 〉,

two communicators in X and Y do not need to take |ΨZ
l 〉 into account to evaluate the non-locality of them.

Hence, with this ∨ notation (or ∧ notation for fermions) one can treat any multipartite system of identical
particles similar to the distinguishable particle case.

By extending the above discussion, the most general statement for the separable states of N boson in P
subsystems is possible. A set of N bosons that spreads over P subsystems Xi (i = 1, · · · , P ) are separable
if and only if the total state is given by

|Ψ〉 = ∨Pi=1(
∑
ai

ψaiXi
|Xi, s

ai
1 〉 ∨ · · · ∨ |Xi, s

ai
ni
〉) (B.3)

where
∑P
i=1 ni = N . Our separability condition can be considered the generalization of that introduced in

Ref. [37].

Now we apply the bipartite separability condition Eq. (B.1) to the case when N boson spread over space
including two distinguishable detectors X and Y (Fig. 1),

|Ψ〉 =|Ψ1〉 ∨ |Ψ2〉 ∨ · · · ∨ |ΨN 〉
= ∨Ni=1 (ri|X, si〉+ li|Y, si〉) (B.4)

where Ψi = (ψi, si) = (riX + liY, si). This state is separable when it can be written as

|Ψ〉 =

N∑
n=0

|ΨX
n 〉 ∨ |ΨY

N−n〉 (B.5)

(|ΨX
n 〉 is a n-boson state in X and |Ψ(N − n)Y 〉 is a N − n boson state in Y ), for |ΨX

n 〉 ∨ |ΨY
N−n〉 with

different n cannot superpose with each other.

It is quite straightforward to define several entanglement measures for bipartite bosonic states that vanish
when the states are separable. Here, we present the definition of entanglement entropy as an example.

Entanglement entropy. The entropy of a bipartite system that consists of X and Y can be defined with
the symmetrized partial trace technic [9, 12,20]. Suppose that a subsystem X with n bosons has a complete
orthonormal basis set {|X, sa1〉 ∨ · · · ∨ |X, san〉}a} ≡ {|(s1, · · · , sn)a〉X}a and the identity matrix is given by
IX =

∑
a |(s1, · · · , sn)a〉〈(s1, · · · , sn)a|X . Then the reduced density matrix ρnY of Y with respect to a total
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Figure 5: Entanglement entropy of 2 bosons according to the variation of spatial coherence. The entropy is
zero when one of (r1, r2, l1, l2) is zero. The maximal E(ρent) is given when |r1| = |r2| = |l1| = |l2| = 1√

2
by

1/2. NSSR restricts the possible states to superpose to each other, which diminishes the maximal entropy
to 1/2.

state |Ψ〉 is derived from Definition 4 as

ρnY =TrX(IX |Ψ〉〈Ψ|)

=
∑
a

â
(

(s1, · · · , sn)a
)
|Ψ〉〈Ψ|â†

(
(s1, · · · , sn)a

)
(B.6)

and the entropy is given by

E(|Ψ〉) =

N−1∑
n=1

P (ρnY )E(ρnY ) = −
N−1∑
n=1

P (ρnY )Tr(ρnY ln ρnY ) (B.7)

where P (ρnY ) is the probability for ρnY to be observed. Ref. [20] connects the symmetrized partial trace to
the subalgebra restriction [7, 8] in algebraic quantum mechanics.

As a simple example, we compute the entropy of two bosons with internal states ↑ and ↓ respectively.
Then from Eq. (B.3), the state is given by

|Ψ〉 =
(
r1r2| ↑, ↓〉X + l1l2| ↑, ↓〉Y

)
+
(
r1l2| ↑〉X ∨ | ↓〉Y + l1r2| ↓〉X ∨ | ↑〉Y

)
. (B.8)

Considering the case when each detector observes one particle, IX is given by IX =
∑
r,s=↑,↓ |r, s〉〈r, s|X and

the reduced density matrix ρY becomes

ρY =
1

|r1l2|2 + |r2l1|2
(
|r1l2|2| ↓〉〈↓ |Y + |l1r2|2| ↑〉〈↑ |Y

)
(B.9)

with probability (|r1l2|2 + |l1r2|2). Hence, the entanglement entropy for |Ψ〉 is given by

E(|Ψ〉) =(|r1l2|2 + |l1r2|2)E(ρY )

=− |r1l2|2 log
[ |r1l2|2

|r1l2|2 + |l1r2|2
]
− |l1r2|2 log

[ |l1r2|2

|r1l2|2 + |l1r2|2
]
. (B.10)

The state is unentangled when one of (r1, r2, l1, l2) is zero. The maximal E(ρent) is given when |r1| = |r2| =
|l1| = |l2| = 1√

2
by 1/2 (Fig. 5). The derivation of Eq. (B.10) is given in the former works, e.g., Ref [10,12],

however we here reproduce it for the comparison with the fermionic case in Section 3.
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