Skip to main content
Log in

Improved statistical fluctuation analysis for twin-field quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The decoy state scheme is the most widely studied quantum key distribution protocol to detect existence of eavesdropping. Twin-field quantum key distribution (TF-QKD) is a promising protocol for realizing secret key sharing over long distances. However, the secret key rate becomes relatively low considering the finite-size effect. In this study, the statistical fluctuation analysis of the four-intensity decoy-state TF-QKD system proposed in a recent study (Zhang et al. in Phys Rev A 95:012333, 2017) is considered, and its performance is compared with the results of the Gaussian approximation and Chernoff bound methods. Numerical simulations show that the suggested method shows a considerable improvement in both the key generation rate and transmission distance over the Chernoff bound method under actual experimental environment. We find that the scheme increases secret key rate 1.04–4.06 times and transmission distances 10–18 km farther. We also present optimized parameters for Gaussian, Chernoff, and our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). (Theoretical Aspects of Quantum Cryptography ?? celebrating 30 years of BB84)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)

    Article  ADS  Google Scholar 

  6. Yin, H.-L., Chen, T.-Y., Zong-Wen, Y., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  7. Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  8. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 1–15 (2017)

    Article  Google Scholar 

  9. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  10. Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. NPJ Quantum Inf. 5(1), 1–6 (2019)

    Article  Google Scholar 

  11. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98(4), 042332 (2018)

    Article  ADS  Google Scholar 

  12. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)

    Article  ADS  Google Scholar 

  13. Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95(1), 012333 (2017)

    Article  ADS  Google Scholar 

  14. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys Rev A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  15. Curty, M., Feihu, X., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  16. Wang, S., He, D.-Y., Yin, Z.-Q., Feng-Yu, L., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2015-0-00385)  supervised by the IITP (Institute for information and communications Technology Planning and Evaluation). This work was supported by the National Research Foundation of Korea  (NRF) grant funded by the Korea government  (MSIT) (No. 2019R1A2C2010061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Heo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, J. & Heo, J. Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf Process 20, 127 (2021). https://doi.org/10.1007/s11128-021-03035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03035-x

Keywords

Navigation