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Abstract
Decision-making is important especially during a crisis such as the novel COVID-19
pandemic. The quantum prisoner’s dilemma with two dilemma strength parameters
is introduced as a model for the interaction between pharmaceutical and other related
enterprises during the pandemic. Novel Nash equilibria are identified. The coopetition
equilibrium (simultaneous cooperation and competition) is emphasized. Motivated by
the novel equilibria of the quantum version, a classical mixed-strategy formulation that
can be applied to real-world situations is proposed. Suitable values of the dilemma
strength parameters and quantum entanglement can encourage coopetition, which can
be considered as a route to full cooperation.

Keywords Quantum prisoner’s dilemma · Nash equilibrium · Dilemma strength
parameters · Quantum entanglement · Coopetition · COVID-19

1 Introduction

Explaining decision-making problems in social, economic, and political systems is one
of the principal objectives of game theory [1,2]. A game consists of a set of players and
a set of strategies. Every player chooses a strategy and receives a payoff accordingly.
The Nash equilibrium (NE) is an important concept in game theory. It is a strategy
combination with the characteristic that no player can individuallymaximize his or her
own payoff by deviating from it. No player can obtain a payoff higher than the Pareto
optimal (PO) one without reducing the payoff of the opponent. An interesting general
formulation of symmetric, two-player, two-strategy games is introduced in [3–5] by
defining two types of universal scaling parameters. The prisoner’s dilemma (PD) is the
most well-known symmetric, two-player and two-strategy game. It is characterized
by a unique NE that is not PO. This game models the dilemma between individual
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Table 1 Payoff matrix of the
general classical PD model for
the interaction of two
pharmaceutical enterprises A
and B

B: C B: D

A: C (R, R) (S, T )

A: D (T , S) (P, P)

and group interests, which is important in life. The PD has been used in a variety of
scientific fields [6–9].

Quantum game theory [10–24] is an important extension of game theory using
concepts from quantum information theory [25]. In quantum games, the strategic
space is expanded, and novel NEs can be obtained. The quantum extension of game
theory expands its fields of application.

The novel COVID-19 pandemic is a major global health threat [26]. It preoccupies
many researchers as well as the global community [26–30]. This pandemic is charac-
terized by the substantial role played by human decisions in transmitting or containing
it [29]. When human behavior is competitive, resources are not used in a way that is
most efficient for the community. Most of the literature in game theory studies indi-
vidual behavior. This is particularly relevant during the current COVID-19 pandemic,
when decisions are made by individuals and local governments. Do we act for the
common good, or do we do what we perceive as serving our individual interests?
Moreover, coopetition, simultaneous cooperation and competition occurring together,
is highly expected in COVID-19 management [30]. Some examples of coopetition
behavior include sharing resources among pharmaceutical enterprises to hasten the
development of a vaccine. Many publishers have provided open access to scientific
research related to COVID-19. The classical PD does not appear to offer anything new
on this issue, but the quantum PD (QPD) might be able to help.

Our aim is to model the interaction between pharmaceutical enterprises or other
relevant institutions during the COVID-19 pandemic using theQPDwith two dilemma
strength parameters. The remainder of this paper is organized as follows. In Sect. 2,
the classical PD is reviewed briefly. Section 3 is devoted to some forms of the QPD
in various strategic spaces. In Sect. 4, a quantum model is presented, and recently
observed coopetition behavior is highlighted. Conclusions are drawn in Sect. 5.

2 Classical prisoner’s dilemma

Interaction between pharmaceutical enterprises can be modeled using the classical
PD [2]. Consider two enterprises A and B: each of them chooses a strategy, cooperate
(C), or compete (D). Let R, S, T , and P denote the reward, sucker, temptation, and
punishment payoff, respectively, with T > R > P > S. The payoff of each player is
determined according to the payoff matrix in Table 1. Even in a mixed-strategy game,
the strategy combination (D, D) is the unique NE that is not PO. This means that each
of the enterprises competes and receives payoff P .

In the general formulation of two-player, two-strategy games with two dilemma
strength parameters, two universal scaling parameters [3–5] are defined. The strength
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Table 2 Rescaled payoff matrix
of a general two-player,
two-strategy game using the
universal scaling parameters

B: C B: D

A: C (R, R) (P − Dr, R + Dg)

A: D (R + Dg, P − Dr) (P, P)

of the gamble-intending dilemma is Dg = T − R, and the strength of the risk-averting
dilemma is Dr = P − S. The payoff matrix can be rescaled accordingly as shown in
Table 2. Positive Dg values tempt players to exploit each other. On the other hand, if
Dr is positive, then exploitation is to be avoided. When both Dg and Dr are positive,
players are tempted to compete, and the game reduces to the classical PD.

Without loss of generality, we can set arbitrary values for both R and P satisfying
the condition R > P . Let R = 1 and P = 0. The classical mixed-strategy PD is
formulated by assuming that agent A(B) adopts strategy C with probability p (q) and
adopts strategy D with probability 1 − p (1 − q), where 0 ≤ p, q ≤ 1. Using the
payoff matrix in Table 2, the agents’ expected payoff functions are given by

$cA(p, q, Dr, Dg) = (Dr − Dg)pq − Dr p + (1 + Dg)q (1)

and

$cB(p, q, Dr, Dg) = (Dr − Dg)pq − Drq + (1 + Dg)p. (2)

A probability combination (p∗, q∗) is a mixed-strategy NE if

$cA(p∗, q∗, Dr, Dg) ≥ $cA(p, q∗, Dr, Dg),∀p ∈ [0, 1] (3)

and

$cB(p∗, q∗, Dr, Dg) ≥ $cB(p∗, q, Dr, Dg),∀q ∈ [0, 1]. (4)

Thus, the strategy combination (D, D) is the unique NE, and the dilemma still exists.

3 Quantum prisoner’s dilemma in various strategic spaces

In the Eisert–Wilkens–Lewenstein (EWL) quantization scheme [10,11] for the PD,
the state of each player is described fully by a qubit in the Hilbert space of a two-state

system: either |C〉 =
(
1
0

)
or |D〉 =

(
0
1

)
. The initial state of the game is assumed

to be |CC〉. Then, a general entangling operator

Ĵ (γ ) = cos
(γ

2

)
Î ⊗ Î + ı sin

(γ

2

)
σ̂x ⊗ σ̂x (5)

is applied, where Î is the identity operator, σ̂x is the Pauli-spin flip operator, and
0 ≤ γ ≤ π

2 is the entanglement degree. At γ = 0, the initial state is separable,
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while at γ = π
2 , the game is maximally entangled. Each player is allowed to choose

a quantum strategy, Û j , j = A,B. Then, a disentangling operator Ĵ † is applied, and
the final state of the game becomes

|ψ f 〉 = Ĵ †ÛA ⊗ ÛB Ĵ |CC〉. (6)

The player’s expected payoff functions are calculated according to

$A(B) = PA(B)(C,C)�CC + PA(B)(C, D)�CD

+PA(B)(D,C)�DC + PA(B)(D, D)�DD, (7)

where PA(B) is the classical payoff of player A (B) and�σσ̀ = |〈σ σ̀ |ψ f 〉|2 is the joint
probability that the final state will collapse to |σ σ̀ 〉 and σ = C, D.

Consider the strategic space to be the space of operators SU(2), then

Û j (α j , β j ) =
{(

α j β j

−β̄ j ᾱ j

)
, α j , β j ∈ C, |α j |2 + |β j |2 = 1, and j = A,B

}
. (8)

This space is known to be closed under composition; hence, for each quantum strategy
Û (α, β), there is a counter-strategy Û (−β̄, ᾱ). Therefore, there is no NE for the
quantum game under this general strategic space, in agreement with [19,20].

Several subsets of the space SU (2) have been proposed as strategic spaces. Eisert
et al. [10] defined the two-parameter strategic space in (9),

Û j (θ j , φ j ) =
{(

eıφ j cos(θ j /2) sin(θ j /2)
− sin(θ j /2) e−ıφ j cos(θ j /2)

)
: θ j ∈ [0, π ], φ j ∈ [0, π

2
], and j = A,B

}
.

(9)

Also, they defined the quantum strategies: D̂ ≡ Û (π, 0) =
(

0 1
−1 0

)
and Q̂ ≡

Û (0, π
2 ) =

(
ı 0
0 −ı

)
for compete and quantum cooperate, respectively. Novel fea-

tures are observed, where the NE properties are found to depend on the entanglement
parameter γ [10,11]. The alternative two-parameter strategic space in (10) was defined
in [20,21].

Û j (θ j , φ j ) =
{(

cos(θ j /2) ıeıφ j sin(θ j /2)
ıe−ıφ j sin(θ j /2) cos(θ j /2)

)
: θ j ∈ [0, π ], φ j ∈ [0, π

2
], and j = A,B

}

(10)

Different NE properties were obtained.
Eisert and Wilkens [22] supposed a restricted one-parameter strategic space in the

form described in (11).

Û j (θ j ) =
{(

cos(θ j/2) sin(θ j/2)
− sin(θ j/2) cos(θ j/2)

)
: θ j ∈ [0, π ], and j = A,B

}
(11)
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The game was reduced to the classical mixed-strategy PD. Elgazzar [17] introduced
the simple one-parameter strategic space in (12) and (13) as a superposition of the
quantum strategies Q̂ and D̂.

ÛA(p) =
{(

ı
√
p

√
1 − p

−√
1 − p −ı

√
p

)
, 0 ≤ p ≤ 1

}
(12)

ÛB(q) =
{(

ı
√
q

√
1 − q

−√
1 − q −ı

√
q

)
, 0 ≤ q ≤ 1

}
(13)

The agentA (B) coopetates (Q̂)withprobability p (q) and competes D̂withprobability
1 − p (1 − q). This strategic space preserves the novel features of the EWL scheme
and improves its NE properties in addition to simplifying calculations. For this reason,
we use it in our quantum model in the next section.

Studying NEs in quantum games is important. Based on the EWL scheme with a
maximally entangled quantum initial state, Landsburg [23] has classified all poten-
tial NEs for generic two-player, two-strategy games. Ahmed [24] has generalized
Landsburg’s classification to an arbitrary maximally entangled quantum initial state
1√
2
(|CC〉 + eiθ |DD〉), where θ is a real number.

4 Quantummodel

Here, we present a quantum model based on the quantization scheme in [17]. Using
the strategic space defined by (12) and (13), and the classical payoff matrix (Table 2)
with R = 1 and P = 0, the expected payoff functions are given by

$qA = �CC − Dr�CD + (1 + Dg)�DC (14)

and

$qB = �CC + (1 + Dg)�CD − Dr�DC. (15)

This yields

$qA(p, q, Dg, Dr, γ )

= (Dr − Dg)pq − Dr p + (1 + Dg)q + (1 + Dr + Dg)(p − q) sin2 γ (16)

and

$qB(p, q, Dg, Dr, γ ) =
(Dr − Dg)pq − Drq + (1 + Dg)p − (1 + Dr + Dg)(p − q) sin2 γ. (17)
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Table 3 Possible NE domains of the quantum model and the corresponding payoffs. In this table, γ1 =
arcsin(

√
Dr/(1 + 2Dr+ �)), γ2 = arcsin(

√
(Dr+ �)/(1 + 2Dr+ �)), πD = 1+Dr+ � −(1+2Dr+ �

) sin2 γ , πQ = −Dr + (1+ 2Dr+ �) sin2 γ , p∗ = q∗ = [(1+ 2Dr+ �) sin2 γ − Dr]/ �, Q̂∗ = Û (p∗),

and π∗ = − � p∗2 + (1+ �)p∗

Dilemma strength parameters Entanglement NE Payoff

Dg > Dr

0 ≤ γ ≤ γ1

γ1 ≤ γ ≤ γ2

γ2 ≤ γ ≤ π
2

D̂ ⊗ D̂
D̂ ⊗ Q̂

Q̂∗ ⊗ Q̂∗
Q̂ ⊗ D̂
Q̂ ⊗ Q̂

(0, 0)
(πD, πQ)

(π∗, π∗)

(πQ , πD)

(1, 1)

Dg = Dr
0 ≤ γ ≤ γ1
γ1 ≤ γ ≤ π

2

D̂ ⊗ D̂
Q̂ ⊗ Q̂

(0, 0)
(1, 1)

Dg < Dr

0 ≤ γ ≤ γ2

γ2 ≤ γ ≤ γ1

γ1 ≤ γ ≤ π
2

D̂ ⊗ D̂
D̂ ⊗ D̂
Q̂ ⊗ Q̂
Q̂ ⊗ Q̂

(0, 0)
(0, 0)
(1, 1)
(1, 1)

A strategy product ÛA(p∗) ⊗ ÛB(q∗) is an NE if the corresponding probability com-
bination (p∗, q∗) satisfies the conditions (18) and (19).

$qA(p∗, q∗, Dg, Dr, γ ) − $qA(p, q∗, Dg, Dr, γ ) ≥ 0, ∀ p ∈ [0, 1] (18)

$qB(p∗, q∗, Dg, Dr, γ ) − $qB(p∗, q, Dg, Dr, γ ) ≥ 0, ∀ q ∈ [0, 1] (19)

This yields (20) and (21).

(p − p∗)[(Dg − Dr)q
∗ + Dr − (1 + Dr + Dg) sin

2 γ ] ≥ 0 (20)

(q − q∗)[(Dg − Dr)p
∗ + Dr − (1 + Dr + Dg) sin

2 γ ] ≥ 0 (21)

The possible NE domains are obtained, as shown in Table 3. TheNE properties depend
on both �= Dg − Dr and γ . Therefore, different values of the dilemma strength
parameters Dg and Dr that do not affect the NE properties of the classical PD are
shown to affect the NE properties of the QPD.

When �> 0, as γ exceeds the first threshold γ1, a novel symmetric NE Q̂∗ ⊗ Q̂∗ is
obtained. This is more efficient than the two asymmetric NEs D̂ ⊗ Q̂ and Q̂ ⊗ D̂, as
shown in Fig. 1. Each player obtains an increasing expected payoff from zero to one;
see Fig. 1. This NEwas obtained first in [17] and appears only when Dg > Dr. The NE
Q̂∗ ⊗ Q̂∗ corresponds to coopetition (simultaneous cooperation with probability p∗
and competition with probability 1− p∗). This coopetition behavior has been observed
during the COVID-19 pandemic [23]. We present an interpretation. Sensing danger
increases the temptation to act selfishly, with the result that Dg exceeds Dr. At the
same time, the possibility of transmission of the infection to different locations around
the world increases the entanglement. Thus, the coopetition behavior appears.

As shown in Table 3, at�= 0 the transitional interval disappears, with the result that
only two domains for NE are obtained. For �< 0, the transitional interval is replaced
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Fig. 1 Nash equilibrium expected payoff of the quantum model, $q , as a function of the entanglement
parameter, γ . We set Dr = 0.1 and Dg = 0.7. For 0 ≤ γ ≤ γ1, $

q = 0 (competing phase). When

γ1 ≤ γ ≤ γ2, $
q = π∗ (coopetiting phase). For γ2 ≤ γ ≤ π

2
, $q = 1 (cooperating phase). As γ

increases, the quantum model transfers continuously from competing to coopetiting, then to cooperating
phases corresponding to the classical, transitional, and quantum domains, respectively

by a coexistence interval where both D̂ ⊗ D̂ and Q̂ ⊗ Q̂ are possible NEs. When
γ = π

2 , the initial state is maximally entangled, and the NE is Q̂ ⊗ Q̂ independently
of �. This NE is a pure strategy in agreement with Landsburg’s classification [23].

In the following, we highlight many properties of the coopetition NE (Q̂∗ ⊗ Q̂∗).
At γ = γ1, the probability of cooperation, p∗ in Q̂∗ is equal to zero, and the payoff
of each player is equal to zero. As the entanglement increases, p∗ increases, and the
payoff increases accordingly. In themiddle of the transitional region, both probabilities
of cooperation and competition are equal. In this case, the player’s payoff is equal to
1
4 (2+ �), which is the mean of the classical payoff matrix (Table 2). This behavior
was observed previously in some limits of various QPD schemes [13–17]. At the end
of the transitional region, p∗ = 1 (full cooperation), and each player receives a payoff
one.

The length of the transitional interval is defined as L = γ2 − γ1. We depict L as
a function of both Dr and � in Fig. 2. Without loss of generality, we assume that
0 < Dr ≤ 1 and 0 <�≤ 1. The length L increases with either an increase in � or a
decrease in Dr, especially for very small values of Dr . As � increases, the increase in
L with the decrease in Dr occurs faster.

For a deep understanding of how the entanglement parameter γ affects the expected
payoff, π∗, of the coopetition NE, we set Dr = 0.1 and explore π∗ as a function of γ

for different values of the parameter�, as shown in Figure 3. In all cases, the expected
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Fig. 2 Length of the transitional interval as a function of both Dr and �. The transitional region expands
with an increase in � and a decrease in Dr , especially for small values of Dr

Fig. 3 Nash equilibrium expected payoff within the transitional region, π∗, versus the entanglement param-
eter, γ , for Dr = 0.1, and different values of �. As γ increases, π∗ increases from 0 to 1. As � increases,
the transitional region expands, and the increase in π∗ occurs more slowly
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payoff π∗ increases with the increase in γ in agreement with [17], but this increase
occurs more slowly as � increases, as a result of the expansion of the transitional
region as � increases.

To investigate a pure cooperator–competitor conflict in our model, consider a case
in which A always cooperates (p = 1), while B always competes (q = 0). From (16)
and (17), the expected payoff functions become

$qA(1, 0, Dg, Dr, γ ) = −Dr + (1 + 2Dr+ �) sin2 γ (22)

and

$qB(1, 0, Dg, Dr, γ ) = 1 + Dr+ � −(1 + 2Dr+ �) sin2 γ. (23)

The expected payoff function $qA(1, 0, Dg, Dr, γ ) is an increasing function of γ , while
$qB(1, 0, Dg, Dr, γ ) is decreasing. For γ < π/4, competing is more profitable. When
γ > π/4, cooperation ismore profitable, and a cooperator can beat a competitor. Then,
increasing the entanglement enhances the payoff of a cooperator against a defector in
agreement with [17].

Within the transitional interval, a coopetitor–cooperator conflict results in the
expected payoff functions being (24) and (25),

$qA(p∗, 1, Dg, Dr, γ ) = 1 + (p∗ − 1)
[
(1 + Dr + Dg) sin

2 γ − Dg

]
(24)

$qB(p∗, 1, Dg, Dr, γ ) = p∗ − (p∗ − 1)
[
(1 + Dr + Dg) sin

2 γ − Dr

]
(25)

with the result that $qA(p∗, 1, Dg, Dr, γ ) ≥ $qB(p∗, 1, Dg, Dr, γ ) ∀γ ∈ [γ1, γ2]. The
expected payoff functions for a coopetitor–competitor conflict are

$qA(p∗, 0, Dg, Dr, γ ) = p∗ [
(1 + Dr + Dg) sin

2 γ − Dr

]
(26)

and

$qB(p∗, 0, Dg, Dr, γ ) = p∗ [
−(1 + Dr + Dg) sin

2 γ + 1 + Dg

]
. (27)

Then, $qA(p∗, 0, Dg, Dr, γ ) > $qB(p∗, 0, Dg, Dr, γ ) for γ > π/4, and vice versa.
Therefore, the coopetition strategy Q̂∗ is more efficient than both the cooperation
strategy Q̂ and the competition strategy D̂ within the transitional interval.

The impact of the environment on quantum systems is very important. It can be
modeledby considering corrupted sources for the initial state [12,13,17]. The corrupted
sources produce the state |D〉 with a corruption rate 0 ≤ r ≤ 1 and the state |C〉 with
probability 1 − r . The competition NE, D̂ ⊗ D̂ is robust, while the cooperation NE,
Q̂⊗ Q̂ is not robust under corruption [17]. Here, we are interested in investigating the
robustness of the coopetition NE, Q̂∗ ⊗ Q̂∗. Based on [17], the degree of robustness,
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Fig. 4 Degree of robustness, DR, of the Nash equilibrium within the transitional region as a function of the
entanglement parameter, γ , for Dr = 0.1, and different values of �. As γ increases, DR decreases. As �
increases, the transitional region expands, and the reduction of DR occurs more slowly

0 ≤ DR ≤ 1, of the NE of the QPD with respect to corruption of the source is defined
as in (28).

DR(Dg, Dr, γ ) =
⎧⎨
⎩
1, 0 ≤ γ ≤ γ1;

1
Dg−Dr

[
Dg − (1 + Dr + Dg) sin2 γ

]
, γ1 ≤ γ ≤ γ2;

0, γ2 ≤ γ ≤ π
2 .

(28)

In the transitional interval, the degree of robustness of the coopetition NE can be
expressed as (29).

DR(Dr,�, γ ) = 1

�
[
Dr+ � −(1 + 2Dr+ �) sin2 γ

]
(29)

Figure 4 shows DR as a function of γ for different values of � at Dr = 0.1. As
previously observed in [12,13,17], as the entanglement increases, the robustness of
NE (DR) decreases and the system become more sensitive to mistakes. Increasing
� slows the rate of DR reduction with increasing γ . Therefore, mistakes are to be
reduced when dealing with such entangled systems. Entanglement is to be limited
to the minimal value, which allows the emergence of the coopetition behavior, when
mistakes are expected.

The expected payoff functions of the quantummodel (16) and (17) can be expressed
in terms of its analogs in the classical mixed-strategy model (1) and (2) as

$qA = $cA cos2 γ + $cB sin2 γ (30)
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and

$qB = $cB cos2 γ + $cA sin2 γ. (31)

Then, the global classical payoff ($cA + $cB) is preserved in the quantum model. The
effect of quantization is only in sharing the payoffs according to (30) and (31). Apply-
ing the condition that the payoffs are shared according to (30) and (31) to the classical
mixed-strategy PD yields the expected payoff functions of the quantum model (16)
and (17), with all NEs in Table (3) being identified. In this situation, p (q) are the
classical probability of cooperation of player A (B). With this formulation, our results
become applicable to real-world scenarios.

5 Conclusion

In the COVID-19 pandemic, full cooperation or at least coopetition is necessary for
controlling the infection and for sustainability. The NE properties of the quantum
model are shown to depend on the dilemma strength parameters and the quantum
entanglement. Then, values of the dilemma strength parameters that do not affect
the NE properties of the classical PD are shown to influence the NE properties of
the QPD significantly. When Dg > Dr, there are three regions for NE: classical
(competition), transitional (coopetition), and quantum (cooperation), according to the
entanglement level. Within the transitional interval, coopetition is more efficient than
both cooperation and competition. Quantum entanglement is found to enhance the
payoff of the coopetition NE, but it reduces the robustness of the coopetition NE with
respect to corruption of the sources. The increase of the difference �= Dg − Dr
slows these processes. At the middle of the transitional interval, the payoff of the
coopetition NE is equal to the average of the classical payoff matrix. The transitional
interval expands with an increase in �. It can cover the entire range [0, π/2] for very
large values of �, thereby delaying attainment of the full cooperation NE. Hence,
differences in � are not to be overrated. In addition, mistakes are to be avoided,
because increasing the entanglement leads to increased sensitivity to mistakes and
environmental influences.
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