Skip to main content
Log in

Quantum three-box paradox: a proposal for atom optics implementation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum three-box paradox is one of the major mysteries revealed through two-state vector formalism of the quantum theory in conjunction with the weak measurements. We suggest a proposal for the experimental implementation of the paradox using time tested tools of Bragg regime atom optics with a two-level atom diffracted from a cavity field in the momentum space. The proposed schematics can be easily executed within the limits of contemporary laboratory resources using either quantized or classical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schrödinger, E.: Mathematical proceedings of the cambridge philosophical society. Mathematical proceedings of the Cambridge Philosophical Society 31, 555–563 (1935)

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Whitaker, A.: Einstein, Bohr and the quantum dilemma: From quantum theory to quantum information. Cambridge University Press (1996)

  4. Bell, J.S.: On the Einstein podolsky rosen paradox. Phys. Phys. Fizika 1(3), 195 (1964)

    Article  MathSciNet  Google Scholar 

  5. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via bell’s theorem. Phys. Rev. Lett. 47(7), 460 (1981)

    Article  ADS  Google Scholar 

  6. Aspect, A., Dalibard, J., Roger, G.: Experimental test of bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49(25), 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aspect, A., Grangier, P., Roger, G.: Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: a new violation of bell’s inequalities. Phys. Rev. Lett. 49(2), 91 (1982)

    Article  ADS  Google Scholar 

  8. Laloë, F.: Do we really understand quantum mechanics? Cambridge University Press (2019)

  9. Nielsen, M.A., Computation, I.C.Q.: Quantum information. cambridge university press (2000)

  10. Rarity, J.G., Tapster, P., Gorman, P., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4(1), 82 (2002)

    Article  ADS  Google Scholar 

  11. Wilde, M.M.: Quantum information theory. Cambridge University Press (2017)

  12. Fuchs, C.A.: Coming of age with quantum information. Cambridge University Press (2011)

  13. Timpson, C.G.: Quantum information theory and the foundations of quantum mechanics. OUP Oxford (2013)

  14. Schrödinger, E., Wheeler, J., Zurek, W.: Quantum theory and measurement. Princeton University Press, Princeton, pp. 152 (1983)

  15. Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A Math. Gen. 24(10), 2315 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. Aharonov, Y., Popescu, S., Rohrlich, D., Skrzypczyk, P.: Quantum Cheshire cats. New Journal of Physics 15(11), 113015 (2013)

  17. Ravon, T., Vaidman, L.: The three-box paradox revisited. J. Phys. A Math. Theor. 40(11), 2873 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Griffiths, R.B.: Consistent histories and quantum reasoning. Phys. Rev. A 54(4), 2759 (1996)

    Article  ADS  Google Scholar 

  19. Kent, A.: Consistent sets yield contrary inferences in quantum theory. Phys. Rev. Lett. 78(15), 2874 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Griffiths, R.B.: Choice of consistent family, and quantum incompatibility. Phys. Rev. A 57(3), 1604 (1998)

    Article  ADS  Google Scholar 

  21. Griffiths, R.B., Hartle, J.B.: Comment on consistent sets yield contrary inferences in quantum theory. Phys. Rev. Lett. 81(9), 1981 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kastner, R.E.: The three-box paradox and other reasons to reject the counterfactual usage of the abl rule. Found. Phys. 29(6), 851–863 (1999)

    Article  MathSciNet  Google Scholar 

  23. Kirkpatrick, K.: Classical three-box paradox. J. Phys. A Math. Gen. 36(17), 4891 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Resch, K.J., Lundeen, J.S., Steinberg, A.M.: Experimental realization of the quantum box problem. Phys. Lett. A 324(2–3), 125–131 (2004)

    Article  ADS  MATH  Google Scholar 

  25. George, R.E., Robledo, L.M., Maroney, O.J., Blok, M.S., Bernien, H., Markham, M.L., Twitchen, D.J., Morton, J.J., Briggs, G.A.D., Hanson, R.: Opening up three quantum boxes causes classically undetectable wavefunction collapse. Proceedings of the National Academy of Sciences 110(10), 3777–3781 (2013)

  26. Okamoto, R., Takeuchi, S.: Experimental demonstration of a quantum shutter closing two slits simultaneously. Sci. Rep. 6, 35161 (2016)

    Article  ADS  Google Scholar 

  27. Aharonov, Y., Cohen, E., Landau, A., Elitzur, A.C.: The case of the disappearing (and re-appearing) particle. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  28. Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics. In: Time in quantum mechanics. Springer, pp. 369–412 (2002)

  29. Aharonov, Y., Rohrlich, D.: Quantum paradoxes: Quantum theory for the perplexed. Weinheim: Wiley-VCH (2005)

  30. Tamir, B., Cohen, E.: Introduction to weak measurements and weak values. Quanta 2(1), 7–17 (2013)

    Article  MATH  Google Scholar 

  31. Aharonov, Y., Cohen, E., Elitzur, A.C.: Can a future choice affect a past measurement’s outcome? Ann. Phys. 355, 258–268 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Aharonov, Y., David, Z.A., Lev, V.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)

    Article  ADS  Google Scholar 

  33. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), B1410 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Denkmayr, T., Geppert, H., Sponar, S., Lemmel, H., Matzkin, A., Tollaksen, J., Hasegawa, Y.: Observation of a quantum cheshire cat in a matter-wave interferometer experiment. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  35. Aharonov, Y., Cohen, E., Elitzur, A.C.: Foundations and applications of weak quantum measurements. Phys. Rev. A 89(5), 052105 (2014)

  36. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)

    Article  ADS  Google Scholar 

  37. Aharonov, Y., Cohen, E., Waegell, M., Elitzur, A.C.: The weak reality that makes quantum phenomena more natural: novel insights and experiments. Entropy 20(11), 854 (2018)

    Article  ADS  Google Scholar 

  38. Tollaksen, J.: Pre-and post-selection, weak values and contextuality. J. Phys. A Math. Theor. 40(30), 9033 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Roychoudhuri, C., Kracklauer, A.F., Creath, K.: The nature of light: what is a photon? CRC Press (2017)

  40. Dürr, S., Nonn, T., Rempe, G.: Fringe visibility and which-way information in an atom interferometer. Phys. Rev. Lett. 81(26), 5705 (1998)

    Article  ADS  Google Scholar 

  41. Khan, A.A., Zubairy, M.S.: Quantum logic gate operating on atomic scattering by standing wave field in bragg regime. Fortschritte der Physik Prog. Phys. 46(4–5), 417–422 (1998)

    Article  ADS  Google Scholar 

  42. Dürr, S., Nonn, T., Rempe, G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395(6697), 33–37 (1998)

    Article  ADS  Google Scholar 

  43. Khan, A.A., Zubairy, M.S.: Quantum non-demolition measurement of fock states via atomic scattering in bragg regime. Phys. Lett. A 254(6), 301–306 (1999)

    Article  ADS  Google Scholar 

  44. Qamar, S., Zhu, S.-Y., Zubairy, M.S.: Teleportation of an atomic momentum state. Phys. Rev. A 67(4), 042318 (2003)

  45. Khalique, A., Saif, F.: Engineering entanglement between external degrees of freedom of atoms via bragg scattering. Phys. Lett. A 314(1–2), 37–43 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Khosa, A.H., Ikram, M., Zubairy, M.S.: Measurement of entangled states via atomic beam deflection in bragg’s regime. Phys. Rev. A 70(5), (2004)

  47. Ikram, M., Saif, F., et al.: Engineering maximally entangled n-photon noon field states using an atom interferometer based on bragg regime cavity qed. J. Phys. B Atom. Mol. Opt. Phys. 40(7), 1359 (2007)

    Article  ADS  Google Scholar 

  48. Islam, R., Khosa, A.H., Saif, F.: Generation of bell, noon and w states via atom interferometry J. Phys. B: Atom. Mol. Opt. Phys. 41(3), 035505 (2008)

  49. Ul-Islam, R., Ikram, M., Ahmed, R., Khosa, A., Saif, F.: Atomic state teleportation: from internal to external degrees of freedom. J. Mod. Opt. 56(7), 875–880 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Saif, F., Khosa, A.H., et al.: An engineering two-mode field noon state in cavity QED. J. Phys. B Atom. Mol. Opt. Phys. 43(1), 015501 (2009)

  51. Islam, R., Khosa, A.H., Saif, F., Bergou, J.A.: Generation of atomic momentum cluster and graph states via cavity qed. Quan. Inform. Process. 12(1), 129–148 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Abbas, T., Ikram, M., et al.: State engineering and information distribution over quantum networks via distant manipulations based on quantized momenta of neutral atoms. J. Phys. B Atom. Mol. Opt Phys 47(24), 245502 (2014)

  53. Islam, R., Abbas, T., Ikram, M.: rbiasing a coin after the toss: asymmetric delayed choice quantum eraser via bragg regime cavity qeds. Laser Phys. Lett 12(1), 015203 (2015)

  54. Abbas, T., Qurban, M., Islam, R.-U., Ikram, M.: Engineering distant cavity fields entanglement through bragg diffraction of neutral atoms. Opt. Commun. 355, 575–579 (2015)

    Article  ADS  Google Scholar 

  55. Ikram, M., Imran, M., Abbas, T., et al.: Wheeler’s delayed-choice experiment: a proposal for the bragg-regime cavity-qed implementation. Phys. Rev. A 91(4), (2015)

  56. Qurban, M., Abbas, T., Ikram, M., et al.: Quantum teleportation of high-dimensional atomic momenta state. Int. J. Theor. Phys. 55(6), 2977–2988 (2016)

    Article  MATH  Google Scholar 

  57. Nawaz, M., Abbas, T., Ikram ,M., et al.: Engineering quantumhyperentangled states in atomic systems. J. Phys. B Atom. Mol. Opt. Phys. 50(21), 215502 (2017)

  58. Nawaz, M., Ikram, M., et al.: Remote state preparation through hyperentangled atomic states. J. Phys. B Atom. Mol. Opt. Phys. 51(7), 075501 (2018)

  59. Nawaz, M., Abbas, T., Ikram, M., et al.: Atomic cheshire cat: untying energy levels from the de broglie motion. J. Phys. B Atom. Mol. Opt. Phys. 52(10), 105501 (2019)

  60. Cook, R., Bernhardt, A.: Deflection of atoms by a resonant standing electromagnetic wave. Phys. Rev. A 18(6), 2533 (1978)

    Article  ADS  Google Scholar 

  61. Bernhardt, A., Shore, B.: Coherent atomic deflection by resonant standing waves. Phys. Rev. A 23(3), 1290 (1981)

    Article  ADS  Google Scholar 

  62. Marte, M., Stenholm, S.: Multiphoton resonances in atomic bragg scattering. Appl. Phys. B 54(5), 443–450 (1992)

    Article  ADS  Google Scholar 

  63. Giltner, D.M., McGowan, R.W., Lee, S.A.: Theoretical and experimental study of the bragg scattering of atoms from a standing light wave. Phys. Rev. A 52(5), 3966 (1995)

    Article  ADS  Google Scholar 

  64. Zubairy, M.S., Agarwal, G.S., Scully, M.O.: Quantum disentanglement eraser: a cavity qed implementation. Phys. Rev. A 70(1), 012316 (2004)

  65. Peres, A.: Opposite momenta lead to opposite directions. Am. J. Phys. 68(11), 991–992 (2000)

    Article  ADS  Google Scholar 

  66. Shore, B.W.: Manipulating quantum structures using laser pulses. Cambridge University Press (2011)

  67. Haroche, S., Raimond, J.-M.: Exploring the quantum: atoms, cavities, and photons. Oxford University Press (2006)

  68. Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.-M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455(7212), 510–514 (2008)

    Article  ADS  Google Scholar 

  69. Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Brune, M., Raimond, J.-M., Haroche, S., et al.: Ultrahigh finesse fabry-pérot superconducting resonator. Appl. Phys. Lett. 90(16), 164101 (2007)

  70. Miffre, A., Jacquey, M., Buchner, B., Trence, G., Vigue, J.: Atom interferometry. Phys. Scr. 74, C23, 74, p. C23 (2006)

  71. Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81(3), 1051 (2009)

    Article  ADS  Google Scholar 

  72. Dürr, S., Kunze, S., Rempe, G.: Pendellösung oscillations in second-order bragg scattering of atoms from a standing light wave. Quan. Semiclassical Opt. J. Eur. Opt. Soc. Part B 8(3), 531 (1996)

    Article  ADS  Google Scholar 

  73. Kunze, S., Dürr, S., Rempe, G.: Bragg scattering of slow atoms from a standing light wave. EPL (Europhysics Letters) 34(5), 343 (1996)

    Article  ADS  Google Scholar 

  74. Martin, P.J., Gould, P.L., Oldaker, B.G., Miklich, A.H., Pritchard, D.E.: Diffraction of atoms moving through a standing light wave. Phys. Rev. A 36(5), 2495 (1987)

    Article  ADS  Google Scholar 

  75. Vernooy, D., Ilchenko, V.S., Mabuchi, H., Streed, E., Kimble, H.: High-q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23(4), 247–249 (1998)

    Article  ADS  Google Scholar 

  76. Hood, C., Chapman, M., Lynn, T., Kimble, H.: Real-time cavity qed with single atoms. Phys. Rev. Lett. 80(19), 4157 (1998)

    Article  ADS  Google Scholar 

  77. Münstermann, P., Fischer, T., Maunz, P., Pinkse, P., Rempe, G.: Dynamics of single-atom motion observed in a high-finesse cavity. Phys. Rev. Lett. 82(19), 3791 (1999)

    Article  ADS  Google Scholar 

  78. Puppe, T., Maunz, P., Fischer, T., Pinkse, P.W., Rempe, G.: Single-atom trajectories in higher-order transverse modes of a high-finesse optical cavity. Phys. Scripta 2004(T112), 7 (2004)

    Article  Google Scholar 

  79. Ball, P.: Quantum all the way: how does our classical world emerge from the counterintuitive principles of quantum theory? can we even be sure that the world doesn’t’go quantum’when no one is watching? philip ball talks to the theorists and experimentalists trying to find out. Nature 453(7191), 22–26 (2008)

    Article  Google Scholar 

  80. Chiow, S.-W., Kovachy, T., Chien, H.-C., Kasevich, M.A.: 102 k large area atom interferometers. Phys. Rev. Lett. 107(13), 130403 (2011)

  81. Dürr, S., Rempe, G.: Complementarity and quantum erasure in an atom interferometer. Opt. Commun. 179(1–6), 323–335 (2000)

    Article  ADS  Google Scholar 

  82. Rempe, G.: Quantum physics of entangled systems: Wave-particle duality and atom-photon molecules. Annalen der Physik 9(11–12), 843–850 (2000)

    Article  ADS  Google Scholar 

  83. Dürr, S., Rempe, G.: Wave-particle duality in an atom interferometer. In: Advances in Atomic, Molecular, and Optical Physics. Elsevier 42, pp. 29–71 (2000)

  84. Manning, A.G., Khakimov, R.I., Dall, R.G., Truscott, A.G.: Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 11(7), 539–542 (2015)

    Article  Google Scholar 

  85. Torii, Y., Suzuki, Y., Kozuma, M., Sugiura, T., Kuga, T., Deng, L., Hagley, E.: Mach-zehnder bragg interferometer for a bose-einstein condensate. Phys. Rev. A 61(4), 041602 (2000)

  86. Hughes, K., Deissler,B., Burke, J., Sackett, C.: High-fidelity manipulation of a bose-einstein condensate using an optical standing wave. Phys. Review A 76(3), 035601 (2007)

  87. Li, Z.-Y.: Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis. Chin. Phys. B 28(6), (2019)

  88. Shomroni, I., Bechler, O., Rosenblum, S., Dayan, B.: Demonstration of weak measurement based on atomic spontaneous emission. Phys. Rev. Lett. 111(2), 023604 (2013)

  89. Morley, J., Edmunds, P., Barker, P.: Measuring the weak value of momentum in a double slit atom interferometer. In: Journal of Physics: Conference Series, 701, p. 012030 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ikram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Islam, Ru., Saeed, M.H. et al. Quantum three-box paradox: a proposal for atom optics implementation. Quantum Inf Process 20, 148 (2021). https://doi.org/10.1007/s11128-021-03091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03091-3

Keywords

Navigation