Skip to main content
Log in

Approaching quantum-limited phase tracking with a large photon flux in a fiber Mach–Zehnder interferometer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The real-time phase tracking has a large number of applications in the precise measurement of various physical parameters. The classical limit of fiber phase tracking has been realized with homodyne detection under a low photon flux (typically ~ 106 s−1). However, it is still difficult to approach the coherent state limit when measuring a weak phase fluctuation in real time by using a larger photon flux. In this work, we propose a fiber Mach–Zehnder system and experimentally demonstrate a nearly quantum-limited phase tracking with mean photon numbers of \(\sim3.7 \times 10^{10}\) s−1. In the experiment, the input state is a continuous-mode coherent state and an adaptive Kalman filter is used to construct a phase-locked loop. We effectively track a very weak random phase varying between  − 0.07 and + 0.07 radians, and the minimum mean-squared error is optimized to \(2.5 \times 10^{ - 5}\) which approaches the coherent state limit. Our method has potentially applications for fiber-based real-time sensing and measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  2. Xiao, M., Wu, L.A., Kimble, H.J.: Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987)

    Article  ADS  Google Scholar 

  3. Grangier, P., Slusher, R.E., Yurke, B., LaPorta, A.: Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett. 59, 2153–2156 (1987)

    Article  ADS  Google Scholar 

  4. Berry, D.W., Wiseman, H.M.: Adaptive quantum measurements of a continuously varying phase. Phys. Rev. A 65, 043803 (2002)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  6. Tsang, M., Wiseman, H.M., Caves, C.M.: Fundamental quantum limit to waveform estimation. Phys. Rev. Lett. 106, 090401 (2011)

    Article  ADS  Google Scholar 

  7. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  8. Yonezawa, H., Nakane, D., Wheatley, T.A., Iwasawa, K., Takeda, S., Arao, H., Ohki, K., Tsumura, K., Berry, D.W., Ralph, T.C., Wiseman, H.M., Huntington, E.H., Furusawa, A.: Quantum-enhanced optical-phase tracking. Science 337, 1514–1517 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chiang, C.-F.: Selecting efficient phase estimation with constant-precision phase shift operators. Quantum Inf. Process. 13, 415–428 (2014)

    Article  ADS  MATH  Google Scholar 

  10. Berni, A.A., Gehring, T., Nielsen, B.M., Händchen, V., Paris, M.G.A., Andersen, U.L.: Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photonics 9, 577–581 (2015)

    Article  ADS  Google Scholar 

  11. Meher, N., Sivakumar, S.: Enhancing phase sensitivity with number state filtered coherent states. Quantum Inf. Process. 19, 51 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zheng, K., Xu, H., Zhang, A., Ning, X., Zhang, L.: Ab initio phase estimation at the shot noise limit with on–off measurement. Quantum Inf. Process. 18, 329 (2019)

    Article  ADS  Google Scholar 

  13. Gea-Banacloche, J., Leuchs, G.: Squeezed states for interferometric gravitational-wave detectors. J. Mod. Opt. 34, 793–811 (1987)

    Article  ADS  Google Scholar 

  14. Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)

    Article  Google Scholar 

  15. Grote, H., Danzmann, K., Dooley, K.L., Schnabel, R., Slutsky, J., Vahlbruch, H.: First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101 (2013)

    Article  ADS  Google Scholar 

  16. LIGO Scientific Collaboration and Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. LIGO Scientific Collaboration and Virgo Collaboration: GW170817: Observation of Gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  18. Otterstrom, N., Pooser, R.C., Lawrie, B.J.: Nonlinear optical magnetometry with accessible in situ optical squeezing. Opt. Lett. 39, 6533–6536 (2014)

    Article  ADS  Google Scholar 

  19. Sun, H., Liu, Z., Liu, K., Yang, R., Zhang, J., Gao, J.: Experimental demonstration of a displacement measurement of an optical beam beyond the quantum noise limit. Chin. Phys. Lett. 31, 084202 (2014)

    Article  ADS  Google Scholar 

  20. Hudelist, F., Kong, J., Liu, C., Jing, J., Ou, Z.Y., Zhang, W.: Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014)

    Article  ADS  Google Scholar 

  21. Liu, F., Zhou, Y., Yu, J., Guo, J., Wu, Y., Xiao, S., Wei, D., Zhang, Y., Jia, X., Xiao, M.: Squeezing-enhanced fiber Mach-zehnder interferometer for low-frequency phase measurement. Appl. Phys. Lett. 110, 021106 (2017)

    Article  ADS  Google Scholar 

  22. Lawrie, B.J., Lett, P.D., Marino, A.M., Pooser, R.C.: Quantum sensing with squeezed light. ACS Photonics 6, 1307–1318 (2019)

    Article  Google Scholar 

  23. Liu, S., Lou, Y., Jing, J.: Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier. Phys. Rev. Lett. 123, 113602 (2019)

    Article  ADS  Google Scholar 

  24. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  25. Nagata, T., Okamoto, R., Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316, 726 (2007)

    Article  ADS  Google Scholar 

  26. Ludlow, A.D., Boyd, M.M., Ye, J., Peik, E., Schmidt, P.O.: Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015)

    Article  ADS  Google Scholar 

  27. Wolfgramm, F., Cerè, A., Beduini, F.A., Predojević, A., Koschorreck, M., Mitchell, M.W.: Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010)

    Article  ADS  Google Scholar 

  28. Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.-A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photonics 7, 229–233 (2013)

    Article  ADS  Google Scholar 

  29. Feng, L., Zhang, M., Zhou, Z., Li, M., Xiong, X., Yu, L., Shi, B., Guo, G., Dai, D., Ren, X., Guo, G.: On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016)

    Article  ADS  Google Scholar 

  30. The LIGO Scientific Collaboration: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613–619 (2013)

    Article  Google Scholar 

  31. Armen, M.A., Au, J.K., Stockton, J.K., Doherty, A.C., Mabuchi, H.: Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002)

    Article  ADS  Google Scholar 

  32. Iwasawa, K., Makino, K., Yonezawa, H., Tsang, M., Davidovic, A., Huntington, E., Furusawa, A.: Quantum-limited mirror-motion estimation. Phys. Rev. Lett. 111, 163602 (2013)

    Article  ADS  Google Scholar 

  33. Zhang, L., Zheng, K., Liu, F., Zhao, W., Tang, L., Yonezawa, H., Zhang, L., Zhang, Y., Xiao, M.: Quantum-limited fiber-optic phase tracking beyond pi range. Opt. Express 27, 2327–2334 (2019)

    Article  ADS  Google Scholar 

  34. Cimini, V., Mellini, M., Rampioni, G., Sbroscia, M., Leoni, L., Barbieri, M., Gianani, I.: Adaptive tracking of enzymatic reactions with quantum light. Opt. Exp. 27, 35245–35256 (2019)

    Article  ADS  Google Scholar 

  35. Cimini, V., Gianani, I., Ruggiero, L., Gasperi, T., Sbroscia, M., Roccia, E., Tofani, D., Bruni, F., Ricci, M.A., Barbieri, M.: Quantum sensing for dynamical tracking of chemical processes. Phys. Rev. A 99, 053817 (2019)

    Article  ADS  Google Scholar 

  36. Berry, D.W., Tsang, M., Hall, M.J.W., Wiseman, H.M.: Quantum Bell-Ziv-zakai bounds and heisenberg limits for waveform estimation. Phys. Rev. X 5, 031018 (2015)

    Google Scholar 

  37. Berry, D.W., Hall, M.J.W., Wiseman, H.M.: Stochastic heisenberg limit: optimal estimation of a fluctuating phase. Phys. Rev. Lett. 111, 113601 (2013)

    Article  ADS  Google Scholar 

  38. Dinani, H.T., Berry, D.W.: Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states. Phys. Rev. A 95, 063821 (2017)

    Article  ADS  Google Scholar 

  39. Cooper, W.S.: Use of optimal estimation theory, in particular the Kalman filter, in data analysis and signal processing. Rev. Sci. Instrum. 57, 2862–2869 (1986)

    Article  ADS  Google Scholar 

  40. Beker, M.G., Bertolini, A., van den Brand, J.F., Bulten, H.J., Hennes, E., Rabeling, D.S.: State observers and Kalman filtering for high performance vibration isolation systems. Rev. Sci. Instrum. 85, 034501 (2014)

    Article  ADS  Google Scholar 

  41. Marshall, T., Szafraniec, B., Nebendahl, B.: Kalman filter carrier and polarization-state tracking. Opt. Lett. 35, 2203–2205 (2010)

    Article  ADS  Google Scholar 

  42. Jimenez-Martinez, R., Kolodynski, J., Troullinou, C., Lucivero, V.G., Kong, J., Mitchell, M.W.: Signal tracking beyond the time resolution of an atomic sensor by kalman filtering. Phys. Rev. Lett. 120, 040503 (2018)

    Article  ADS  Google Scholar 

  43. Dubey, S.U., Dubey, P.K., Rajagopalan, S., Sharma, S.J.: Real-time implementation of Kalman filter to improve accuracy in the measurement of time of flight in an ultrasonic pulse-echo setup. Rev. Sci. Instrum. 90, 025105 (2019)

    Article  ADS  Google Scholar 

  44. Wieczorek, W., Hofer, S.G., Hoelscher-Obermaier, J., Riedinger, R., Hammerer, K., Aspelmeyer, M.: Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015)

    Article  ADS  Google Scholar 

  45. Lee, B.: Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9, 57–79 (2003)

    Article  ADS  Google Scholar 

  46. Mauranyapin, N.P., Madsen, L.S., Taylor, M.A., Waleed, M., Bowen, W.P.: Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics 11, 477–481 (2017)

    Article  Google Scholar 

  47. Wang, X., Chen, S., Du, Z., Wang, X., Shi, C., Chen, J.: Experimental study of some key issues on fiber-optic interferometric sensors detecting weak magnetic field. IEEE Sens. J. 8, 1173–1179 (2008)

    Article  ADS  Google Scholar 

  48. McRae, T.G., Ngo, S., Shaddock, D.A., Hsu, M.T.L., Gray, M.B.: Frequency stabilization for space-based missions using optical fiber interferometry. Opt. Lett. 38, 278–280 (2013)

    Article  ADS  Google Scholar 

  49. Mehmet, M., Eberle, T., Steinlechner, S., Vahlbruch, H., Schnabel, R.: Demonstration of a quantum-enhanced fiber Sagnac interferometer. Opt. Lett. 35, 1665–1667 (2010)

    Article  ADS  Google Scholar 

  50. Huo, M., Qin, J., Cheng, J., Yan, Z., Qin, Z., Su, X., Jia, X., Xie, C., Peng, K.: Deterministic quantum teleportation through fiber channels. Sci. Adv. 4, eaas9401 (2018)

  51. Ben-Aryeh, Y.: Phase estimation by photon counting measurements in the output of a linear Mach -Zehnder interferometer. J. Opt. Soc. Am. B-Opt. Phys. 29, 2754–2764 (2012)

    Article  ADS  Google Scholar 

  52. Tsang, M., Shapiro, J.H., Lloyd, S.: Quantum theory of optical temporal phase and instantaneous frequency II Continuous-time limit and state-variable approach to phase-locked loop design. Phys. Rev. A 79(5), 053843 (2009)

    Article  ADS  Google Scholar 

  53. Laverick, K.T., Wiseman, H.M., Dinani, H.T., Berry, D.W.: Adaptive estimation of a time-varying phase with coherent states: Smoothing can give an unbounded improvement over filtering. Phys. Rev. A 97, 042334 (2018)

    Article  ADS  Google Scholar 

  54. Xu, C., Zhang, L., Huang, S., Ma, T., Liu, F., Yonezawa, H., Zhang, Y., Xiao, M.: Sensing and tracking enhanced by quantum squeezing. Photonics Res. 7, A14–A26 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hidehiro Yonezawa, Lisheng Chen and Liufeng Li for illuminating discussions on this work. This research was supported by the National Key R&D Program of China (2017YFA0303703), Fundamental Research Funds for the Central Universities (021314380105), and the National Science Foundation of China (Grant No. 61605072, 61771236,).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zheng, K., Wang, L. et al. Approaching quantum-limited phase tracking with a large photon flux in a fiber Mach–Zehnder interferometer. Quantum Inf Process 20, 164 (2021). https://doi.org/10.1007/s11128-021-03097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03097-x

Navigation