Skip to main content
Log in

An optimal quantum error-correcting procedure using quantifier elimination

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum communication channels suffer from various noises, which are mathematically modeled by error super-operators. To combat these errors, it is necessary to design recovery super-operators. We aim to construct the optimal recovery that maximizes the minimum fidelity through the noisy channel. It is typically a MAX–MIN problem, out of the scope of convex optimization. Compared to existing methods, our method is exact and complete by a reduction to quantifier elimination over real closed fields in a fragment of two alternative quantifier blocks. Finally, the complexity is shown to be in EXP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It refers to polynomial with rational coefficients. As all entries in the input \(\mathscr {E}\) are supposed to be rational, we would simply write ‘polynomial’ for ‘\(\mathbb {Q}\)-polynomial,’ unless it is specified otherwise.

  2. We prefer to encode the square of the fidelity here, rather than the fidelity, since the latter is generally expressed as a square root of an SOS polynomial. The order between fidelities could be correspondingly replaced with the order between their squares.

  3. Encoding complex entries amounts to encoding their real and imaginary parts, which are clearly real. So it is generic to tackle real algebraic numbers \(\Omega \) only.

References

  1. Abu-Nada, A., Fortescue, B., Byrd, M.: Optimizing the frequency of quantum error correction. Phys. Rev Lett. 119(19):article no. 190502 (2017)

  2. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry, 2nd edn. Springer, Berlin (2006)

    Book  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  4. Blondel, V.D., Jeandel, E., Koiran, P., Portier, N.: Decidable and undecidable problems about quantum automata. SIAM J. Comput. 34(6), 1464–1473 (2005)

    Article  MathSciNet  Google Scholar 

  5. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  6. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7):article no. 076001 (2013)

  7. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. ACM SIGSAM Bull 31(2), 2–9 (1997)

    Article  Google Scholar 

  8. Fletcher, A.S., Shor, P.W., Win, M.Z.: Optimum quantum error recovery using semidefinite programming. Phys. Rev. A 75(1):article no. 012338 (2007)

  9. Fletcher, A.S., Shor, P.W., Win, M.Z.: Structured near-optimal channel-adapted quantum error correction. Phys. Rev. A 77(1):article no. 012320 (2008)

  10. Gottesman, D.: Stabilizer codes and quantum error correction. PhD dissertation, California Institute of Technology (1997)

  11. Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Phys. Rev. Appl. 8(4):article no. 044017 (2017)

  12. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kosut, R.L., Shabani, A., Lidar, D.A.: Quantum error correction via convex optimization. Phys. Rev. Lett. 100(2):article no. 020502 (2008)

  14. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3):article no. 032302 (2002)

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland Publishing Co, Amsterdam (1977)

    MATH  Google Scholar 

  16. Mandayam, P., Ng, H.K.: Towards a unified framework for approximate quantum error correction. Phys. Rev. A 86(1):article no. 012335 (2012)

  17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Springer, pp. 337–340 (2008)

  18. Mousolou, V.A.: Entanglement fidelity and measure of entanglement. Quantum Inf. Process. 19:article no. 329 (2020)

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Niu, P.H., Wu, J.W., Yin, L.G., Long, G.L.: Security analysis of measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19(10), 1–14 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52(6), 264–268 (1946)

    Article  MathSciNet  Google Scholar 

  22. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1):article no. 22 (2019)

  23. Rastegin, A.E.: Partitioned trace distances. Quantum Inf. Process. 9(1), 61–73 (2009)

    Article  MathSciNet  Google Scholar 

  24. Reimpell, M., Werner, R.F.: Iterative optimization of quantum error correcting codes. Phys. Rev. Lett. 94(8):article no. 080501 (2005)

  25. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  26. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  27. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    Book  Google Scholar 

  29. Thinh, L.P., Faist, P., Helsen, J., Elkouss, D., Wehner, S.: Practical and reliable error bars for quantum process tomography. Phys. Rev. A 99(5):article no. 052311 (2019)

  30. Uhlmann, A.: On “partial” fidelities. Rep. Math. Phys. 45(3), 407–418 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wen, K., Long, G.L.: One-party quantum-error-correcting codes for unbalanced errors: principles and application to quantum dense coding and quantum secure direct communication. Int. J. Quantum Inf. 8(04), 697–719 (2010)

    Article  Google Scholar 

  32. Wolf, M.M., Cubitt, T.S., Pérez-García, D.: Are problems in quantum information theory (un)decidable? CoRR abs/1111.5425. arxiv:1111.5425 (2011)

  33. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  34. Wu, J., Lin, Z., Yin, L., Long, G.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4):article no. 26 (2019)

  35. Yamamoto, N.: Exact solution for the max–min quantum error recovery problem. In: Proceedings of 48th IEEE Conference on Decision and Control (CDC). IEEE, pp. 1433–1438 (2009)

  36. Yamamoto, N., Hara, S., Tsumura, K.: Suboptimal quantum-error-correcting procedure based on semidefinite programming. Phys. Rev. A 71(2):article no. 022322 (2005)

Download references

Acknowledgements

The authors thank the anonymous reviewers whose insightful comments resolve inconsistencies. The authors are also grateful to Yuan Feng for his valuable suggestions and Jianling Fu for her careful proof-reading. M. Xu is supported by the National Natural Science Foundation of China (No. 11871221), the National Key R&D Program of China (No. 2018YFA0306704) and the Research Funds of Happiness Flower ECNU (No. 2020ECNU-XFZH005). Y. Deng is supported by the National Natural Science Foundation of China (Nos. 61832015, 62072176) and the Inria-CAS joint project Quasar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YJ., Xu, M. & Deng, Y. An optimal quantum error-correcting procedure using quantifier elimination. Quantum Inf Process 20, 170 (2021). https://doi.org/10.1007/s11128-021-03109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03109-w

Keywords

Navigation