Skip to main content
Log in

High-capacity measurement-device-independent deterministic secure quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Deterministic secure quantum communication (DSQC) is an important branch of quantum cryptography and has attracted continuous attention. However, in practical DSQC, the receiver’s detectors can be subjected to detector-side-channel attacks launched by the outside eavesdropper. Moreover, encoding the information in only one degree of freedom (DOF) of photons makes DSQC inefficient. Here, to remove all the detector side channels and increase single-photons’ channel capacity, we report the first high-capacity measurement-device-independent DSQC (HC-MDI-DSQC) protocol by using photons’ polarization-spatial-mode DOFs. This method is similar to the idea of MDI quantum key distribution. Theoretical analyses show that it is advantageous in terms of security and efficiency compared with the state-of-the-art DSQC protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  2. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60(1), 157–166 (1999)

    Article  ADS  Google Scholar 

  3. Beige, A., Englert, B.-G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407–L413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902/1-187902/4 (2002)

    Article  ADS  Google Scholar 

  5. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501/1-140501/4 (2005)

    Article  ADS  Google Scholar 

  6. Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)

    Article  ADS  Google Scholar 

  7. Li, X.-H., Deng, F.-G., Li, C.-Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006)

    Google Scholar 

  8. Yuan, H., Song, J.: An efficient deterministic secure quantum communication scheme with Cluster state. Int. J. Quant. Inform. 7(3), 689–696 (2009)

    Article  MATH  Google Scholar 

  9. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. Chin.-Inf. Sci. 55(2), 360–367 (2012)

    Article  MathSciNet  Google Scholar 

  10. Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. Chin. Ser. G-Phys. Mech. Astron. 56, 1903–1908 (2013)

    Article  ADS  Google Scholar 

  11. Yuan, H., Zhang, Q., Hong, L., et al.: Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int. J. Theor. Phys. 53(8), 2558–2564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Y.-G.: Deterministic secure quantum communication with four-qubit GHZ states. Int. J. Theor. Phys. 57(9), 2831–2842 (2018)

    Article  MATH  Google Scholar 

  13. Yuan, H., Song, J., Liu, X.-Y., Yin, X.-F.: Deterministic secure four-qubit GHZ states three-step protocol for quantum communication. Int. J. Theor. Phys. 58(11), 3658–3666 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elsayed, T.A.: Deterministic secure quantum communication with and without entanglement. Phys. Scrip. 96(2), 025101 (2021)

    Article  ADS  Google Scholar 

  15. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  16. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  17. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)

    Article  ADS  Google Scholar 

  18. Gerhardt, I., Liu, Q., Lamas-Linares, A.A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)

    Article  ADS  Google Scholar 

  19. Qin, H., Kumar, R., Makarov, V., et al.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)

    Article  Google Scholar 

  20. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  21. Walborn, S.P., Almeida, M.P., Souto Ribeiro, P.H., Monken, C.H.: Quantum information processing with hyperentangled photon states. Quantum Inf. Comput. 6, 336 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Wu, X.-D., Zhou, L., Zhong, W., Sheng, Y.-B.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 354 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, T.-J., Li, T., Du, F.-F., Deng, F.-G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)

    Article  ADS  Google Scholar 

  24. Liu, D., Chen, J.-L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  25. Zhao, R.-T., Cheng, L.-L.: High capacity information transmission with single-photon in polarization and spatial mode degrees of freedom over a collective noisy channel. Laser Phys. 30, 065204 (2020)

    Article  ADS  Google Scholar 

  26. Xu, L., Zhao, Z.-W.: High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom. Eur. Phys. J. D 73, 58 (2019)

    Article  ADS  Google Scholar 

  27. Wei, T.-C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell state analysis. Phys. Rev. A 75, 060305(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84, 022340 (2011)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  30. Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029 (2012)

    Article  ADS  Google Scholar 

  31. Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)

    Article  ADS  Google Scholar 

  32. Li, X.H., Ghose, S.: Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)

    Article  ADS  Google Scholar 

  33. Aharonov, D., Ta-Shma, A., Vazirani, U.V., et al.: Quantum bit escrow. Proceedings of the thirty-second annual ACM symposium on Theory of computing pp. 705–714 (2000)

  34. Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58, 2623(R) (1998)

    Article  ADS  MathSciNet  Google Scholar 

  35. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  36. Zhao, L., Yin, Z., Wang, S., et al.: Measurement-device-independent quantum coin tossing. Phys. Rev. A 92(6), 062327 (2015)

    Article  ADS  Google Scholar 

  37. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. Chin. Phys. Mech. Astron. 63(3), 230362 (2020)

    Article  ADS  Google Scholar 

  38. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  39. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  41. Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)

    Article  MathSciNet  Google Scholar 

  42. Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)

    Article  MathSciNet  Google Scholar 

  43. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62071015); the Beijing Municipal Science & Technology Commission (Project No. Z191100007119004), the Beijing Natural Science Foundation (Grant No. 4182006), and the Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Theoretical probabilities of the seven hyperentangled Bell states

Appendix: Theoretical probabilities of the seven hyperentangled Bell states

Table 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Dong, JR., Yang, YL. et al. High-capacity measurement-device-independent deterministic secure quantum communication. Quantum Inf Process 20, 203 (2021). https://doi.org/10.1007/s11128-021-03129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03129-6

Keywords

Navigation