Skip to main content
Log in

A practical quantum designated verifier signature scheme for E-voting applications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Although most of the quantum signatures can be verified by a designated receiver, they do not match the classical designated verifier signature since an indistinguishable signature cannot be efficiently simulated. To adapt quantum signatures in specific environments like E-voting and E-bidding, several quantum designated verifier signature (QDVS) schemes have been proposed. However, it is still too complicated and infeasible to implement existing QDVS schemes in practice. In this paper, we propose a practical QDVS scheme without entanglement for E-voting applications. It only involves the quantum processing part of the underlying quantum key distribution (QKD) to generate correlated key strings, which protects the communication against potential eavesdroppers. The proposed scheme can be easily and efficiently deployed over the existing QKD network without complicated quantum operations. We further show that our QDVS scheme satisfies the required main security requirements and has the capability against several common attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303 (1999)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Gottesman, D., Chuang, I.: Quantum Digital Signatures. arXiv preprint arXiv:0105032 (2001)

  3. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    ADS  Google Scholar 

  4. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    MathSciNet  ADS  Google Scholar 

  5. Li, Q., Li, C., Long, D., Chan, W.H., Wang, C.: Efficient arbitrated quantum signature and its proof of security. Quantum Inf. Process. 12(7), 2427 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  6. Liu, F., Qin, S.J., Su, Q.: An arbitrated quantum signature scheme with fast signing and verifying. Quantum Inf. Process. 13(2), 491 (2014)

    MATH  ADS  Google Scholar 

  7. Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  8. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  9. Feng, Y., Shi, R., Shi, J., Zhou, J., Guo, Y.: Arbitrated quantum signature scheme with quantum walk-based teleportation. Quantum Inf. Process. 18(5), 154 (2019)

    MathSciNet  ADS  Google Scholar 

  10. Wang, M., Chen, X., Yang, Y.: A blind quantum signature protocol using the GHZ state. Sci.China Phys. Mech. Astron. 56(9), 1636 (2013)

    ADS  Google Scholar 

  11. Khodambashi, S., Zakerolhosseini, A.: A sessional blind signature based on quantum cryptography. Quantum Inf. Process. 13(1), 121 (2014)

    MathSciNet  ADS  Google Scholar 

  12. Shi, W.M., Zhang, J.B., Zhou, Y.H., Yang, Y.G.: A new quantum blind signature with unlinkability. Quantum Inf. Process. 14(8), 3019 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Lai, H., Luo, M., Pieprzyk, J., Qu, Z., Li, S., Orgun, M.A.: An efficient quantum blind digital signature scheme. Sci. China Inf. Sci. 60(8), 082501 (2017)

    Google Scholar 

  14. Zhou, J., Zhou, Y., Niu, X., Yang, Y.: Quantum proxy signature scheme with public verifiability. Sci. China Phys. Mech. Astron. 54(10), 1828 (2011)

    ADS  Google Scholar 

  15. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455 (2012)

    MathSciNet  ADS  Google Scholar 

  16. Qin, H., Tang, W.K., Tso, R.: Efficient quantum multi-proxy signature. Quantum Inf. Process. 18(2), 53 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14(7), 2577 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  18. Xu, R., Huang, L., Yang, W., He, L.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654 (2011)

    ADS  Google Scholar 

  19. Guo, W., Xie, S.C., Zhang, J.Z.: A novel quantum proxy blind signature scheme. Int. J. Theor. Phys. 56(5), 1708 (2017)

    MATH  Google Scholar 

  20. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. in Advances. In: Maurer, U. (ed.) Cryptology – EUROCRYPT’96, pp. 143–154. Springer, Berlin, (1996)

  21. Shi, W.M., Zhou, Y.H., Yang, Y.G.: A real quantum designated verifier signature scheme. Int. J. Theor. Phys. 54(9), 3115 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Shi, W.M., Wang, Y.M., Zhou, Y.H., Yang, Y.G., Zhang, J.B.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753 (2018)

    ADS  Google Scholar 

  23. Shi, S., Wei-Min Wang, Y.M., Wang, Y.H., Zhou, Y.G. Yang.: A scheme on converting quantum deniable authentication into universal quantum designated verifier signature. Optik 190, 10 (2019)

    ADS  Google Scholar 

  24. Xin, X., Wang, Z., Yang, Q., Li, F.: Identity-based quantum designated verifier signature. Int. J. Theor. Phys. 59, 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Xin, X., Wang, Z., Yang, Q., Li, F.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19(3), 1 (2020)

    MathSciNet  ADS  Google Scholar 

  26. Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    MathSciNet  ADS  Google Scholar 

  27. Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A 74, 022304 (2006). https://doi.org/10.1103/PhysRevA.74.022304

    Article  ADS  Google Scholar 

  28. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

    ADS  Google Scholar 

  29. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)

    ADS  Google Scholar 

  30. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3(1), 1 (2012)

    Google Scholar 

  31. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)

    ADS  Google Scholar 

  32. Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93, 012309 (2016). https://doi.org/10.1103/PhysRevA.93.012329

    Article  ADS  Google Scholar 

  33. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)

    ADS  Google Scholar 

  34. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93(3), 032316 (2016)

    ADS  Google Scholar 

  35. Zhang, H., An, X.B., Zhang, C.H., Zhang, C.M., Wang, Q.: High-efficiency quantum digital signature scheme for signing long messages. Quantum Inf. Process. 18(1), 3 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Yin, H.L., Fu, Y., Liu, H., Tang, Q.J., Wang, J., You, L.X., Zhang, W.J., Chen, S.J., Wang, Z., Zhang, Q., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)

    ADS  Google Scholar 

  37. Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41(21), 4883 (2016)

    ADS  Google Scholar 

  38. Roberts, G.L., Lucamarini, M., Yuan, Z.L., Dynes, J.F., Comandar, L.C., Sharpe, A.W., Shields, A.J., Curty, M., Puthoor, I.V., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1 (2017)

    Google Scholar 

  39. Yin, H.L., Wang, W.L., Tang, Y.L., Zhao, Q., Liu, H., Sun, X.X., Zhang, W.J., Li, H., Puthoor, I.V., You, L.X., Andersson, E., Wang, Z., Liu, Y., Jiang, X., Ma, X., Zhang, Q., Curty, M., Chen, T.Y., Pan, J.W.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017). https://doi.org/10.1103/PhysRevA.95.042338

    Article  ADS  Google Scholar 

  40. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89(2), 022307 (2014)

    ADS  Google Scholar 

  41. Kang, B., Boyd, C., Dawson, E.: A novel identity-based strong designated verifier signature scheme. J. Syst. Software 82(2), 270 (2009)

    Google Scholar 

  42. Lee, J.S., Chang, J.H., Lee, D.H.: Arbitrated quantum signature scheme using Bell states. Comput. Electr. Eng. 36(5), 948 (2010)

    ADS  Google Scholar 

  43. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 75 (2006)

    MATH  ADS  Google Scholar 

  45. Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15(01), 1750007 (2017)

    MATH  Google Scholar 

  47. Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7(1), 1 (2017)

    ADS  Google Scholar 

  48. Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56(10), 3019 (2017)

    MATH  ADS  Google Scholar 

  49. Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57(3), 674 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Niu, X.F., Zhang, J.Z., Xie, S.C., Chen, B.Q.: An improved quantum voting scheme. Int. J. Theor. Phys. 57(10), 3200 (2018)

    MATH  Google Scholar 

  51. Wang, S.L., Zhang, S., Wang, Q., Shi, R.H.: Fault-tolerant quantum anonymous voting protocol. Int. J. Theor. Phys. 58(3), 1008 (2019)

    MATH  Google Scholar 

  52. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, X., Zhang, J.Z., Xie, S.C.: A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59(3), 719 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  54. Zhou, B.M., Zhang, K.J., Zhang, X., Wang, Q.L.: The cryptanalysis and improvement of a particular quantum voting model. Int. J. Theor. Phys. 2020, 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Li, Y.R., Jiang, D.H., Zhang, Y.H., Liang, X.Q.: A quantum voting protocol using single-particle states. Quantum Inf. Process. 20(3), 1 (2021)

    MathSciNet  ADS  Google Scholar 

  56. Joy, D., Sabir, M., Behera, B.K., Panigrahi, P.K.: Implementation of quantum secret sharing and quantum binary voting protocol in the IBM quantum computer. Quantum Inf. Process. 19(1), 1 (2020)

    MathSciNet  Google Scholar 

  57. Arapinis, M., Kashefi, E., Lamprou, N., Pappa, A.: Definitions and Analysis of Quantum E-voting Protocols. arXiv preprint arXiv:1810.05083 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengce Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China under Grant No. 62002335 and Anhui Initiative in Quantum Information Technologies under Grant AHY150400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Xue, K., Li, S. et al. A practical quantum designated verifier signature scheme for E-voting applications. Quantum Inf Process 20, 230 (2021). https://doi.org/10.1007/s11128-021-03162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03162-5

Keywords

Navigation