Skip to main content
Log in

Semi-device-independent randomness expansion using \(n\rightarrow 1\) sequential quantum random access codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Randomness expansion is an important application of quantum theory in which random sources are used as seeds to produce fresh random bits. Existing randomness expansion protocols employ the two-party model, and the randomness gained by the participants is not easily controlled. In this study, we investigated three-party randomness expansion protocols based on the sequential quantum random access codes in a semi-device-independent framework. We added a middle participant to the two-party randomness expansion protocol to make the randomness obtained by the final participant controllable. In the three-party protocol, the quantum random access code (QRAC) is implemented twice in sequence, and each participant can extract randomness from his outcome. By finding the optimal trade-off between the two QRACs, we deduce the analytic relationship between the two-dimensional quantum witness violation and certified randomness of the last two participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dhara, C., De La Torre, G., Acín, A.: Can observed randomness be certified to be fully intrinsic. Phys. Rev. Lett. 112, 100402 (2014)

    Article  ADS  Google Scholar 

  2. Colbeck, R., Renner, R.: Free randomness can be amplified. Nature Phys. 8, 450–453 (2012)

    Article  ADS  Google Scholar 

  3. Um, M., Zhang, X., Zhang, J.H., et al.: Experimental certification of random numbers via quantum contextuality. Sci. Rep. 3, 1627 (2013)

    Article  Google Scholar 

  4. Gallego, R., Masanes, L., Torre, G.D.L., et al.: Full randomness from arbitrarily deterministic events. Nat. Commun. 4, 2654 (2013)

    Article  ADS  Google Scholar 

  5. Miller, C.A., Shi, Y.: Universal security for randomness expansion from the spot-checking protocol. SIAM J. Comput. 46(4), 1304–1335 (2017)

    Article  MathSciNet  Google Scholar 

  6. Nieto-Silleras, O., Bamps, C., Silman, J., et al.: Device-independent randomness generation from several Bell estimators. New J. Phys. 20, 023049 (2018)

    Article  ADS  Google Scholar 

  7. Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. J. Phys. A 44(9), 095305 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Pironio, S., Acín, A., Massar, S., et al.: Random numbers certified by Bell’s theorem. Nature 464(7291), 1021 (2010)

    Article  ADS  Google Scholar 

  9. Li, H.W., Yin, Z.Q., Wu, Y.C., et al.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)

    Article  ADS  Google Scholar 

  10. Li, H.W., Pawłowski, M., Yin, Z.Q., et al.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)

    Article  ADS  Google Scholar 

  11. Li, D.D., Wen, Q.Y., Wang, Y.K., et al.: Security of semi-device-independent random number expansion protocols. Sci. Rep. 5, 15543 (2015)

    Article  ADS  Google Scholar 

  12. Zhou, Y.Q., Li, H.W., Wang, Y.K., et al.: Semi-device-independent randomness expansion with partially free random sources. Phys. Rev. A 92, 022331 (2015)

    Article  ADS  Google Scholar 

  13. Zhou, Y.Q., Gao, F., Li, D.D., et al.: Semi-device-independent randomness expansion with partially free random sources using \(3\rightarrow 1\) quantum random access code. Phys. Rev. A 94, 032318 (2016)

    Article  ADS  Google Scholar 

  14. Ambainis, A., Nayak, A., Ta-Shma, A., et al.: Dense quantum coding and a lower bound for 1-way quantum automata. Proc. 31st Annual ACM Symp. on Theory of Computing (STOC’99). 376–83 (1999)

  15. Tavakoli, A., Hameedi, A., Marques, B., et al.: Quantum random access codes using single \(d\)-Level systems. Phys. Rev. Lett. 114, 170502 (2015)

    Article  ADS  Google Scholar 

  16. Wehner, S., Christandl, M., Doherty, A.C.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78, 062112 (2008)

    Article  ADS  Google Scholar 

  17. Ambainis, A., Leung, D., Mancinska, L., et al.: Quantum random access codes with shared randomness. arXiv: 0810.2937 (2008)

  18. Liabøtrø, O.: Improved classical and quantum random access codes. Phys. Rev. A 95, 052315 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Tavakoli, A., Marques, B., Pawłowski, M., et al.: Spatial versus sequential correlations for random access coding. Phys. Rev. A 93, 032336 (2016)

    Article  ADS  Google Scholar 

  20. Curchod, F.J., Johansson, M., Augusiak, R., et al.: Unbounded randomness certification using sequences of measurements. Phys. Rev. A 95, 020102(R) (2017)

    Article  ADS  Google Scholar 

  21. Sasmal, S., Das, D., Mal, S., et al.: Steering a single system sequentially by multiple observers. Phys. Rev. A 98, 012305 (2018)

    Article  ADS  Google Scholar 

  22. Mohan, K., Tavakoli, A., Brunner, N.: Sequential random access codes and self-testing of quantum measurement instruments. New J. Phys. 21, 083034 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Aguilar, E.A., Borkała, J.J., Mironowicz, P., et al.: Connections between mutually unbiased bases and quantum random access codes. Phys. Rev. Lett. 121, 050501 (2018)

    Article  ADS  Google Scholar 

  24. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random sources. J. Comput. Syst. Sci. 33, 75–87 (1986)

    Article  Google Scholar 

  25. Foletto, C., Calderaro, L., Vallone, G., et al.: Experimental demonstration of sequential quantum random access codes. Phys. Rev. Res. 2, 033205 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61701229, 61901218), Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20170802, BK20190407), Postdoctoral Science Foundation-funded Project of China (Grant Nos. 2018 M630557, 2018T110499), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1701139 B), The Open Fund of the State Key Laboratory of Cryptology, China (Grant No. MMKFKT201914)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yuan, J., Zhou, Y. et al. Semi-device-independent randomness expansion using \(n\rightarrow 1\) sequential quantum random access codes. Quantum Inf Process 20, 346 (2021). https://doi.org/10.1007/s11128-021-03234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03234-6

Keywords

Navigation