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Abstract
Emerging quantum technologies represent a promising alternative for solving hard
combinatorial problems in the post-Moore’s law era. For practical purposes, how-
ever, the current number of qubits limits the direct applicability to larger real-world
instances in the near-term future. Therefore, a promising strategy to overcome this
issue is represented by hybrid quantum classical algorithms which leverage classical
as well as quantum devices. One prominent example of a hard computational problem
is the community detection problem: a partition of a graph into distinct communi-
ties such that the ratio between intra-community and inter-community connectivity
is maximized. In this paper, we explore the current potential of quantum anneal-
ing and gate-based quantum technologies to solve the community detection problem
for an arbitrary number of communities. For this purpose, existing algorithms are
(re-)implemented and new hybrid algorithms, that can be run on gate-model devices,
are proposed. Their performance on standardized benchmark graphs has been eval-
uated and compared to the one of a state-of-the-art classical heuristic algorithm.
Although no quantum speed-up has been achieved, the existing quantum annealing-
based methods as well as the novel hybrid algorithms for gate-based quantum
computers yieldmodularity values, which are similar to those of the classical heuristic.
However, the modular architecture of the used algorithms allows for fast utilization of
more powerful quantum technologies once they become available. Reproducibility:
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Our code and data are publicly available (Github in QuantumModularization. https://
github.com/jku-winse/quantum_modularization 2021).

Keywords Community detection · Quantum computing · Quantum annealing ·
Modularity · NISQ

1 Introduction

Problem Statement and Related Work: The community detection problem is about
determining a partition of a graph into distinct communities such that the ratio between
intra-community and inter-community connectivity is maximized. In this context, we
refer to k-community detection as maximizing with respect to an arbitrary number
of k communities. This problem is highly relevant in many practical applications
such as the analysis of social networks [1,11,29], medical science [32], or biology
and chemistry [16,27]. In particular in software engineering, community detection is
essential. Here, large systems frequently need to be decomposed into smaller ones in
order to reduce the complexity toward manageable levels. This process is known as
modularization [28]. Unfortunately, community detection or modularization for that
matter are highly non-trivial problems in which the number of possibilities increases
exponentially, according to the Bell number. Because of that, e.g., for a system with
10 elements there are already 115.975 possible modularizations [4]. Accordingly,
several (classical) solutions to this problem have been developed in the past (see, e.g.,
[3,6,8,12–14,16,19]).

With the dawn of quantum computing technologies, interesting alternatives to these
classical solutions emerged and got investigated by researchers and engineers. The two
most prominent general approaches that are currently utilized for this purpose are:

– Gate-based (GB) quantum computing, where operators are applied to a quantum
system to manipulate its state. Within this paradigm, algorithms for combinatorial
optimization (e.g., QAOA [10] or Grover Adaptive Search [15]) can be utilized
for community detection.

– QuantumAnnealing (QA), where the functionwhich has to be optimized is encoded
in the Hamiltonian of the quantum system.

These are considered the most promising candidates for demonstrating quantum
advantage in solving a computationally hard problem faster than a classical state-
of-the-art algorithm [35]. The recent review by Akbar & Saritha [1] provides a
comprehensive overview to the field, which got established under the term quantum
community detection. The review also contains a comparative analysis with a focus on
quantum inspired algorithms, like the quantum inspired evolutionary algorithm [18].

However, current implementations of those quantum computing technologies are
still in its infancy and are highly limited in its number of qubits. Because of this, the
use of hybrid algorithms is considered a necessity for practical community detection
problems [33]. In those hybrid algorithms (e.g., [30,33,35]), the overall solution is still
handled by a classical framework, but adequately formulated sub-problems are solved
by a quantumdevice (followed by the re-integration of the correspondingly determined
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solutions into the classical framework). As an example, the Quantum Local Search
(QLS) algorithm [33] allows for a bipartition of a graph into two communities, where
the manageable problem size significantly exceeds the potential of current quantum
machines.

Here, machines for QA-based approaches are certainly more scalable with respect
to the number of qubits that can be applied. For example, the D-Wave Advantage
[24] (which is suitable for QA-based approaches) can handle up to 5000 qubits, while
gate-based approaches rely on machines (e.g., by IBM or Google) that can handle a bit
more than 100 qubits (with very impressive and ambitious roadmaps toward thousands
of qubits though).1 Using, e.g., an one-hot encoding as proposed in [29], this allows
QA-based approaches the direct detection of a discrete number k of communities,
while, to the best of our knowledge, all gate-based approaches proposed thus far are
limited to detecting k = 2 communities only. Obviously, this makes comparing the
current potential of QA-based and gate-based approaches impossible for identifying
an arbitrary number of k communities in a given graph.

Moreover, existing QA-based solutions such as proposed in [29] and [30] have not
been evaluated yet on recent hard- and software. Furthermore, Negre et al. (2020) [29]
evaluated the algorithm for various real-world networks against a classical annealer,
but no time metric is stated which indicates how long it took the algorithms to yield
the given results.

Overall, this leaves a situationwithmultiple approaches utilizing quantum technolo-
gies to tackle the community detection problem. However, there is no comprehensive
comparison between the, respectively, proposed quantum community detection solu-
tions available yet.

This paper aims to fill the gap by, first, contributing two novel algorithms for gate-
based devices (for k ≥ 2 communities), called GB1 andGB2 in the following. Second,
reimplementing the QA-approaches reviewed above, which are subsequently called
QA1 and QA2, utilizing current hard- and software. Finally (third), a structured com-
parative evaluation with standardized real-world and artificially generated benchmark
graphs. The following discusses the research questions that guided our research. The
utilized algorithms and according differences to previous work are summarized in
Table 1.

Research Questions: The overall objective of this paper is to evaluate the current
potential of quantum computing for the k-community detection problem. Therefore,
the two main prevailing quantum computing architectures are evaluated by comparing
their performance and the performance of a classical heuristic algorithm for a given set
of test graphs. To enable such a comparison, the creation of novel hybrid algorithms,
which are built to run on current gate-based quantum computers, is necessary. This
leads to the first research question:

– RQ1: How can possible gate-based hybrid algorithms for k-community detection
be constructed?

1 Note that the number of qubits does not necessarily reflect the power of the quantum device. Other metrics
like the connectivity of the qubits or the noise level have to be considered too. To our knowledge, there
exists currently no single metric for the overall quality of quantum computers.
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Table 1 Hybrid algorithms utilized within this paper

Alg. Difference to previous work

GB1 The classical framework is conceptually based on [30], but GB1

-utilizes QLS [33] instead of quantum annealing for bipartition

to enable k-community detection on gate-based devices

-utilizes modularity [8] rather than energy density as the objective function, and

-does not perform initial random bipartition of the graph

GB2 QLS [33] is recursively applied for search space reduction.

QA1 Utilizes D-Wave’s hybrid solver for discrete quadratic models [26]

QA2 Is a re-implementation of the solution proposed in [30] on current hard- and software

Thenewlydeveloped algorithms aswell as the quantumannealing and classicalmethod
are evaluated on a test graph. Furthermore, the impact of the quantum parts within the
new gate-based algorithms is assessed via a substitution and subsequent evaluation
with simulated annealing methods. Therefore, the following two research questions
are answered:

– RQ2: How do the new hybrid gate-based algorithms, the quantum annealing based
methods, and the classical benchmarkheuristic perform ink-community detection?

– RQ3:What is the performance impact of quantumprocessingwithin the gate-based
hybrid algorithms?

Due to current hardware limitations [33], the evaluation considers only on a small
test graph. However, quantum annealing devices provide a higher number of qubits
for combinatorial optimization problems and have already been utilized for a direct
encoding of the k-community detection problem [29]. Therefore, we further evaluate
the performance of the quantum annealing methods on more advanced larger test
graphs, leading to the fourth research question.

– RQ4: How do current quantum annealing based hybrid methods perform on arti-
ficially generated benchmark graphs compared to a classical heuristic algorithm?

The new developed hybrid algorithms, together with an implementation of the other
algorithms used throughout this paper, are publicly available on Github [17] for repro-
ducibility of the obtained results.

Structure of thepaper The remainder of this paper is structured as follows. In Sect. 2,
background information concerning the community detection problem and optimiza-
tion onNISQdevices is given.This also includes a short description of the implemented
algorithms which have been proposed in previous work. Section 3 presents the new
hybrid algorithms for the k-community detection problem, which utilize gate-based
quantum computers, providing an answer to the RQ1 (design question). In Sect. 4,
the evaluation methodology, the obtained results of the experiments, and the critical
discussion of the obtained results are stated. Therefore, RQ2, RQ3 and RQ4 (knowl-
edge questions) are answered within this section. Finally, the conclusion can be found
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in Sect. 5. In addition, more details concerning the methodology are given in the
appendix.

2 Background

This section provides introductory information concerning the problem of commu-
nity detection and appropriate mathematical descriptions as well as the optimization
approaches on current NISQ devices. Within the later, the focus lies on existent quan-
tum or hybrid algorithms dealing with community detection.

2.1 Community detection problem

The most commonly used measure for the quality of a detected community is the so-
called modularity as it has been defined by Newman and Girvan [1,8]. Although the
modularity must not be considered as generalizable to all random graphs, the mathe-
matical formulation fits the requirements of quantum computation.Many optimization
problems in quantum computing are stated in Ising form [35]. This mathematical
abstraction represents the energy of n discrete spin variables si ∈ {−1, 1}, 1 ≤ i ≤ n
with an according local field hi and interactions Ji j between different spins. With this
approach, the energy of a configuration is denoted by the Hamiltonian function [35]:

H(s) =
∑

i, j

Ji j si s j +
∑

i

hi si , si ∈ {−1, 1} (1)

An equivalent formulation is the Quadratic Unconstrained Binary Optimization
(QUBO) form. With the appropriate variable substitution, one obtains [35]:

H(x) =
∑

i< j

Qi, j xi x j +
∑

i

Qii xi , x ∈ {0, 1} (2)

Using one of these forms apparently constraints the problem to a binary form. For
each node of a graph G = (V , E) representing one variable (si or xi ), the modularity
of at most two communities is therefore given by [1]:

M = 1

2m

∑

i, j

Bi j
si s j + 1

2
(3)

withm being the sum over all edge weightswi j of the graph and the modularity matrix
elements Bi j = Ai j − gi g j

2m . In this context, the node degree is gi = ∑
j Ai j where

Ai j represents the according adjacency matrix elements. Similarly, the modularity for
a discrete number of communities is given by [8]:

M = 1

2m

∑

i, j

Bi jδ(ci , ci ) (4)
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2.2 Optimization on NISQ devices

Themost prominent quantum approaches designed for NISQ devices are the Quantum
Approximate Optimization Algorithm (QAOA) and Quantum Annealing (QA), both
of which are inspired by the adiabatic theorem [35]. In QA, the system starts in the
ground state of the initial Hamiltonian HI and evolves according to [35]:

H(t) = t

T
HC +

(
1 − t

T

)
HI , t ∈ {0, T } (5)

to the final state, which is denoted by HC in Ising form (Eq. 1). QAOA applies the
logic of QA to gate-based quantum computers. Here, the time evolution operator of
the system is represented by an alternating application of quantum operators, which
are constructed by either HM or HC and according parameters β, γ . The resulting trial
states Ψ (β, γ ) for different parameter settings are measured, and the parameters are
optimized classically to produce the ground state of HC [35]:

β∗, γ∗ = argminβ,γ 〈Ψ (β, γ )|HC |Ψ (β, γ )〉 (6)

An existent hybrid quantum-classical algorithm for community detectionwhich imple-
mentsQAorQAOA for sub-problemoptimization is theQuantumLocal Search (QLS)
algorithm [33], which has also been implemented within a multi-level approach [35].
The algorithm starts with a random solution and iteratively populates subsets, which
are optimized by QA or QAOA. The sub-problem is formulated by fixing the com-
munity assignment for all nodes which are not in the subset and encoding them as
boundary conditions. The convergence criterion is defined by three iterations without
any further improvement in modularity.
For quantum annealing devices only, the concept of logical super-nodes has been intro-
duced, which allows to handle the k-community detection problem on such devices
[29]. The higher number of available qubits enables the use of one-hot encoding. This
approach has been tested with the D-Wave 2000Q and the qbsolv software. However,
the recently launched D-Wave Advantage and the hybrid solver for discrete quadratic
models (refer to the appendix), which builds on the super-node logic, have not been
tested for community detection so far. These technologies have been used in the first
quantum annealing approach (QA1) in the experiments stated in Sect. 4.
An alternative approach which utilizes quantum annealing has been suggested by
Reittu et al. (2020) [30]. The algorithm is based on the Szemeredi’s Regularity Lemma,
which is defined for large bipartite graphs. After an initial bipartition of the given
graph, iteratively the strongest communities (based on the connectivity) are detected
and removed from the graph. In contrast to other algorithms, the underlying metric for
optimization is not themodularity but rather the difference in energy density compared
to a mean. The D-Wave 2000Q and qbsolv have been utilized for the experiments. An
implementation of this approach represents our second quantum annealing method
(QA2).
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3 Methods for gate-based k-community detection

To the best of our knowledge, there is currently a lack of hybrid algorithms for the
k-community detection problem, which can be run on gate-based devices. For the
purpose of evaluating the potential of currently available quantum architectures, novel
algorithms have been created, which are inspired by previous work [29,30,33].

3.1 Density-based community detection algorithm

The first gate-based algorithm (GB1) works similarly to the one proposed by Reittu
et al. (2020) [30] as it iteratively finds the strongest communities within a given
graph. However, GB1 is designed for gate-based devices rather than quantum anneal-
ing machines and does not bipartite the graph randomly. Therefore, the Szemeredi’s
Regularity Lemma which addresses large bipartite graphs cannot be taken as a mathe-
matical foundation for this algorithm.However, for smaller graphs a randombipartition
affects the community structure more likely and more severe. For this reason, which
has also been tested experimentally, we decided to omit the initial bipartition of the
graph. This experiments have been conducted for design purposes and are therefore
not stated in the paper.

Due to the higher number of available qubits in quantum annealing devices, the
algorithm proposed by Reittu et al. (2020) [30] can directly solve subproblems (the
identification of just two communities for a given set of nodes in the graph) via quantum
annealing. However, for gate-model machines the use of a hybrid algorithmwhich can
handle a larger number of vertices for these subproblems is necessary.We implemented
QLS [33] for this task. Furthermore, to assure that all proposed algorithms optimize
the same objective function, the modularity (Eq. 4) has been taken for this purpose
rather than an energy density deviation from the mean as it is used in the Szemeredi’s
Regularity Lemma. The algorithm is outlined in Algorithm 1.

Algorithm 1 Density-based community detection algorithm (GB1)
1: function GB1(G)
2: n = |G|
3: k = int(

√
n) + 1

4: for je in 1,...,k:→ tries to find communities in k rounds

5: if ( je > 1): remove community V
′
from G

6: if (|G| = 0): stop

7: m1 = m2 = 0; V = V
′ = G

8: while (m1 ≥ m2) :→ stop at max. modularity per node

9: m2 = m1; V
′ = V

10: prepare modularity matrix for current iteration: c = mod_matri x(V ′)
11: QLS(c) →use QLS to find new community V with modularity m
12: if (|V | = 0): break
13: n = |V |; m1 = m

n

14: store V
′
as community

15: return communities

It is assumed that the maximum number of communities does not exceed
√
n with

n being the number of nodes in the graph [36]. The loop searches for the strongest
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community, with themodularity per node as the underlyingmetric. This criterion is not
basedonmathematical analytical reasoning, but rather onheuristics.After the strongest
community has been detected, it is stored and the according nodes are deleted from the
original graph before the procedure repeats for the remaining nodes. The algorithm
stops if the graph does not contain vertices anymore. An alternative breaking scenario
occurs in case there is no initial improvement possible within the inner loop (i.e.,
m < 0). It is assumed that the algorithm works best for graphs with heterogeneous
community structure, because of the logic of iteratively detecting communities based
on their connectivity.

3.2 Recursive-QLS community detection algorithm

The second gate-based algorithm (GB2) represents a recursive application of QLS.
Here, the original system is separated into 2x communities using the recursive_QLS
function as it is outlined inAlgorithm2. In each recursion, the function adds an attribute
to all individual nodes according to the binary community assignment. The sub-graphs
detected in that way serve as the graph parameter in the subsequent recursion. After a
defined number of recursions has been executed, the given attributes of a node encode
its final community. In our approach, we define this upper boundary as the next higher
integer after log2(k), where again k is given by

√
n.

Using GB2, the maximum modularity can then be found by a brute-force search
in the space defined by the power set with the detected communities as its elements.
Alternatively, one could look for the highest modularity in the set of community con-
stellations of the respective recursions by iteratively skipping the last node attribute.
Which alternative is appropriate depends on the existing knowledge concerning the
topology and community structure of the graph. Although the scalability of the pro-
posed algorithms is not within the scope of this paper, GB2 could be applied to larger
graphs by considering the initially detected communities as nodes in a subsequent opti-
mization iteration similarly like it happens within the Louvain algorithm [3]. Thereby,
a considerable part of the limitations in the search space, which are induced by the
recursive GB2, could be compensated.

However, the mentioned search space limitations suggest, that GB2 works best for
a graph with 2x communities. Furthermore, it is expected that GB2 is faster than GB1,
because the number of nodes which have to be optimized in a binary manner reduces
faster with each recursion of GB2 than it does for the iterations in GB1.

Algorithm 2 Recursive QLS
1: function recursive_QLS(G,k,iter=0)
2: if (|G| = 0): stop
3: QLS(G) → separate given graph into 2 communities
4: store values of QLS-result (0 or 1 for each node) as node attribute
5: G1 = nodes with attribute 1
6: G2 = nodes with attribute 0
7: i ter = i ter + 1
8: if (i ter ≥ k): stop
9: recursive_QLS(G1, k, i ter)
10: recursive_QLS(G2, k, i ter)
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4 Experiments and results

The overall objective of the paper is to evaluate the current potential of gate-model
and quantum annealing based devices for the k-community detection problem. The
introduction of the novel hybrid algorithms for gate-based devices (Sect. 3) enables
an initial comparative evaluation of the different architectures.

The conducted experiments are twofold. The first part considers the performance
of all algorithms that have been described above on a real social network, referring to
research question RQ2 and RQ3. As the hybrid solver for discrete quadratic models
[26] is considered the most suitable for scaled up problems, the algorithm is further
tested and compared with a classical state-of-the-art algorithm on four artificial test
graphs in the second part. Therefore, research question RQ4 is answered within this
scope. The subsequent chapters deal with the underlying methodology of the experi-
ments, the obtained results and the discussion of those results.

4.1 Methodology

General procedure. In order to assess the performance of the algorithms described
above, they have been applied to standardized graphs. The metrics of interest are

– Time-to-solution: How long does it take the algorithm to find the solution?
– Quality: What is the modularity of the obtained solution as it has been defined in
Sect. 2.1. (Eq. 4)?

Every experiment has been conducted five times in order to be able to state an average,
best and worst result for each constellation. It has been criticized in [12] that in
almost any paper, where a new method for community detection is introduced, the
testing consists in applying the method to a small set of simple benchmark graphs.
However, within the scope of this paper we have to follow this tradition by evaluating
the algorithms on one prominent real-world dataset or several artificial benchmark
graphs, respectively. Further research on the scalability and specificity of the proposed
algorithms may be the subject of future work. The general framework is implemented
in Python 3.8 with NetworkX for network analysis operations. For statistical testing of
the obtained results, the Mann–Whitney U test [2] has been used, which is equivalent
[23] to the Wilcoxon ranksum test. This test allows comparison between two solution
sets without the assumption of normal distribution. The significance level has been
chosen to be 95% (α = 0, 05). The chosen classical state-of-the-art algorithm for
community detection for benchmarking is the Louvain algorithm [3,12].

First part. Every method described above (QA1, QA2, GB1, GB2, Louvain) has
been tested on the Zachary Karate Club Graph [37], which consists of 34 nodes and
78 edges. This graph has been extensively used to benchmark graph algorithms and
is considered to be by far the most investigated system [12]. The various methods
utilize different hardware and software. However, our framework is modular and can
easily be extended to utilize other quantum computing architectures as they become
available. For details concerning the used technologies, we kindly refer the interested
reader to the appendix.
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Within the first quantum annealing approach (QA1), the problem is solved by the
D-Wave Hybrid Solver Service [26] with the D-Wave Advantage quantum annealer
[24] as the underlying hardware. This hybrid solver allows to directly address discrete
quadratic problems. Due to a high degree of automation, a parameter tuning like it
has been conducted in [29] was not possible. The implementation of QA2 also runs
on the D-Wave Advantage quantum annealer with the parameters set to the default
values. Automatically minor embedding has been used, which is re-calculated each
time a sampling method is called. The simulated annealing methods make use of the
dwave-neal software tool. Therefore, the problem runs on servers of Amazon Web
Services. This shall enhance the comparability of the obtained results as currently
running quantum algorithms represent a form of online computation.

Concerning the gate-based algorithms, these utilize the Qiskit Aqua library, which
provides an implementation ofQAOAwith theMinimumEigenOptimizer as awrapper.
Another implementation of QAOA is publicly available [17], but has not been used
in the experiments. Communication with the hardware happened via the Qiskit IBM
Quantum Provider. The problems have been sent to the IBM Melbourne quantum
computer (15 qubits) with a QLS subset size of 12. The convergence criterion in QLS
has been set to 3 iterations. To estimate the impact of the subset size on the number of
required iterations, tests have been conducted with a subset size of 16 using simulated
annealing. Hereby, one iteration is defined as one sub-problem optimization.

It has to be mentioned, that different definitions of the time-to-solution have been
used. In QA1 and the Louvain algorithm, the overall time required to obtain a solution
has been regarded, which is more meaningful for practical applications. Within QA2,
GB1 and GB2, the time-to-solution is defined as the sum of all quantum processing
(or simulated annealing) parts within the hybrid algorithm. Therefore, the queueing
time is not considered in the metric, which makes it more representative. Furthermore,
the biases of local computation differences are reduced. Additional information con-
cerning timing issues of the utilized quantum systems are stated in the appendix. This
mixed evaluation is justified by the overall objective of the paper, which is to assess the
current potential of quantum technologies for the k-community detection problem in
general, thus allowing to compare the different state-of-the-art of quantum annealing
and gate-based methods.

Second Part. The second part extends the evaluation of the QA1. For this pur-
pose, 12 test graphs of different size and density have been generated. These are the
planted l-partition graph [9] and the LFR-benchmark graph [20], which are consid-
ered prominent artificial graphs for testing community detection algorithms [1,12].
The planted l-partition graph shows a homogeneous community structure, whereas
the LFR-benchmark graph is heterogeneous in community size and connectivity [12].
Both types of graphs have been generated with 100, 246, 496, 747, 1000 and 1500
nodes, with parameters that ensure a rather well-defined community structure and
stable degree (for further details please consult to the appendix).
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Table 2 Average, best and worst performance values of hybrid algorithms and the Louvain algorithm for
the Zachary Karate Club Graph; results for simulated annealing are stated in brackets

Algorithm Modularity Time (ms)

QA1 [0,4198; 0,4198; 0,4198] [5001; 4984; 5030]

QA2 [0,1462; 0,1824; 0,0756] [425; 453; 318]

([0,2142; 0,2530; 0,1829]) ([180; 250; 127])

GB1 [0,3900; 0,4015; 0,3740] [1078544; 995670; 917493]

([0,3940; 0,4172; 0,3734]) ([608; 876; 605])

GB2 [0,4061; 0,4188; 0,3969] [622580; 659579; 570063]

([0,4059; 0,4198; 0,3941]) ([333; 274; 310])

Louvain [0,4096; 0,4188; 0,3969] [12; 14; 15]

Table 3 Average, lowest and highest number of iterations for different subset sizes

Algorithm #for subset size=12 #for subset size=16 Stat. Sign.

GB1 [80,8; 62; 118] [62,8; 43; 75] yes

GB2 [46,6; 43; 51] [44,4; 44; 46] no

Table 4 Statistical significance
of the compared algorithms
regarding the obtained
modularities

Algorithm QA1 QA2 GB1 GB2 Louvain

QA1 – Yes Yes Yes Yes

QA2 Yes – Yes Yes Yes

GB1 Yes Yes – Yes No

GB2 Yes Yes Yes – No

Louvain Yes Yes No No –

4.2 Results

This section states the results of the experiments, which are going to be discussed in the
subsequent chapter. All raw result data are publicly available [17]. The experimental
results concerning the first part are stated in Table 2 for the average, best and worst
performance values out of the 5 runs, based on the modularity. All time values are
in milliseconds. The obtained results for simulated annealing are stated in brackets.
Furthermore, the results concerning the impact of the subset size in QLS are stated in
Table 3.

Table 4 provides information concerning the statistical significance of the obtained
modularity values yielded by the compared algorithms. All time values are considered
to be significant. The modularities obtained by utilizing the IBMQ Melbourne or
simulated annealing for sub-problem optimization show no significant difference for
GB1 and GB2.

The experimental results concerning the second part are stated in Table 5 for the
average, best and worst performance values, based on the modularity. Time values
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Table 5 Average, best and worst performance values of the QA1 and Louvain algorithm for different
artificial graphs

Artif. graph QA1 modularity Louvain modularity Stat. Sign.

PP100 [0,3341; 0,3341; 0,3341] [0,3341; 0,3341; 0,3341] No

LFR100 [0,143; 0,1471; 0,1410] [0,1392; 0,1429; 0,1358] No

PP246 [0,3270; 0,3270; 0,3270] [0,3270; 0,3270; 0,3270] No

LFR246 [0,2037; 0,2037; 0,2037] [0,1874; 0,1918; 0,1791] Yes

PP496 [0,2772; 0,2772; 0,2772] [0,2818; 0,2824; 0,2807] Yes

LFR496 [0,4017; 0,4017; 0,4017] [0,4017; 0,4017; 0,4017] No

PP747 [0,2700; 0,2700; 0,2700] [0,2711; 0,2733; 0,2693] No

LFR747 [0,5372; 0,5372; 0,5372] [0,5372; 0,5372; 0,5372] No

PP1000 [0,1054; 0,1095; 0,0990] [0,1818; 0,1867; 0,1791] Yes

LFR1000 [0,3536; 0,3588; 0,3449] [0,3601; 0,3605; 0,3591] Yes

PP1500 [0,1827; 0,1902; 0,1774] [0,1737; 0,1772; 0,1699] Yes

LFR1500 [0,1768; 0,1772; 0,1763] [0,1623; 0,1646; 0,1584] Yes

Artif. graph QA1 Time (ms) Louvain Time (ms) Stat. Sign.

PP100 [5361; 5347; 5390] [38; 30; 60] Yes

LFR100 [5353; 5342; 5354] [75; 56; 91] Yes

PP246 [30676; 30568; 31039] [129; 112; 141] Yes

LFR246 [30739; 30581; 30933] [226; 190; 350] Yes

PP496 [174667; 174653; 174693] [520; 397; 715] Yes

LFR496 [176167; 176125; 176195] [287; 238; 391] Yes

PP747 [274837; 274727; 274886] [980; 568; 1201] Yes

LFR747 [275009; 274854; 275157] [424; 400; 470] Yes

PP1000 [354189; 353814; 354558] [1493; 1288; 2037] Yes

LFR1000 [354509; 354124; 354771] [1994; 1789; 2321] Yes

PP1500 [477893; 477243; 478775] [3293; 3989; 3045] Yes

LFR1500 [477855; 477196; 478281] [2231; 2489; 2017] Yes

are given in milliseconds. Table 5 additionally states, whether the difference in the
obtained modularity values can be considered as statistically significant.

4.3 Discussion of results

The discussion is structured according to the two parts of the experimental setup: the
first one considering the performance on the Zachary Karate Club Graph only (RQ2,
RQ3), and the second one extending the experiments for QA1 to artificially generated
test graphs (RQ4).

To our knowledge, the best modularity value for the Zachary Karate Club Graph is
0,4198 [3,6], resulting in 4 communities. The subsequent interpretation of the results
requires to consider the following aspects:
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– Varying certain elements of the hybrid algorithms (e.g., differentQAOAimplemen-
tation, different subset size and convergence criterion in QLS, parameter tuning
in QA2) may significantly alter the performance of the algorithms, although they
have been set consciously.

– The characteristics of the Zachary Karate Club Graph, with its 4 communities, fit
the recursive nature of GB2. However, QA2 struggles with such small graphs due
to the applicability of the Szemeredi’s Regularity Lemma and the initial random
bipartition of the network.

– The Louvain algorithm is explicitly designed to solve the community detection
problem especially for larger networks. GB1, GB2, QA1 and QA2 just need minor
adoptions to the underlying optimization function to be more generally applicable.

Answering RQ2. The QA1 is able to reach the highest known modularity in all runs,
but needs considerable time to do so. Due to the arguments mentioned above, the QA2
performs rather poor on the small ZacharyKarateClubGraph.More interestingly,GB1
and GB2 both show no significant difference in the obtained modularities compared to
the state-of-the-art classical Louvain algorithm. Although GB2 performs significantly
slightly better than GB1 in this particular experiment, the later is considered the more
versatile algorithm.

The values for the time-to-solution appear to vary notably between the utilized
algorithms. A decrease in the time-to-solution for GB1 and GB2 could happen via
a lower number of iterations per run. This in turn is indicated by the results to be
possible with larger subset sizes. However, the downturn of larger sub-problems may
be longer times for the solution per iteration. Which effect dominates in practice may
be the subject of further studies. How different subset sizes may affect not only the
number of iterations but also the obtained modularity and time-to-solution could be
roughly extracted from the data provided on Github [17], but does not lie within the
focus of this paper.

Lastly, it shall be mentioned that due to practical run-time reasons, the maximum
number of iterations in the inner loop of GB1 has been set to 5. This number has
sometimes been reached in our experiments, indicating that with more computation
time even better modularity values may be possible.

Answering RQ3. Substituting QAOAwithin GB1 and GB2with simulated annealing
shows no significant differences in the obtained modularity values, which indicates
a rather high solution quality of the IBMQ Melbourne concerning small problems.
The values for the time-to-solution on the other hand vary notably with the use of
simulated annealing.

For this reason, the proposed hybrid classical-quantum algorithms are considered to
yield practical value only after the sub-problem optimization by QAOA exceeds sim-
ulated annealing methods, which heavily depends on future advances on the physical
hardware level.

Answering RQ4. Concerning the obtained modularity values, it can be observed that
for smaller graphs (e.g., PP100, PP246, LFR496) the QA1 and Louvain Algorithm
(LA) yield equal values. This indicates that the global optimum may has been found,
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Fig. 1 Time-to-solution against
number of nodes for the QA1

or both get easily trapped in the same local minimum. For graphs of up to 747 nodes,
the QA1 yields equal results for every run which are better or worse than the ones
of the LA and are probably caused by same partitions of the graph. The obtained
results for larger graphs show a higher variance for both algorithms which may be
caused by the according larger search spaces. This may also be the reason for the
statistical differences when it comes to larger problem instances. What could also
be noticed is a trend for better performance of the QA1 for more heterogeneous
graphs (LFR-graphs). This may be caused by a potentially larger spectral gap between
the different community assignments which in turn would be favorable for quantum
annealing. Concerning the obtained time-to-solution values, the QA1 scales linearly
or even slightly better as it is shown in Fig. 1, whereas the LA appears to run in
time O(n*logn) [19]. Figure 1 shows that there is almost no difference in the obtained
values for PP and LFR graphs. This may be caused by the hybrid solver framework of
D-Wave which unfortunately does not provide transparent analysis of the conducted
steps. Looking at the time values in Table 5 clearly shows the longer, but more robust,
running times of QA1.

Overall, it was not possible to identify an remarkable increase in solution quality
or time-to-solution with the QA1 compared to a state-of-the-art heuristic classical
solver. However, as [25] claims accelerated time-to-solutions for very large problems,
it would be interesting to extend the evaluation to graphs of bigger sizes.

But not only the graph size and density shall be considered. The obtained results
show that there are significant performance differences which arise only due to the
community structure of the graph,which is defined by its homogeneity, average degree,
ratio of intra- and inter-community connectivity, etc. Therefore, as criticized in [12], the
specificity of the algorithms for given problems has to be examinedwithout restrictions
to size and density.

Finally, it should be mentioned that both the D-Wave Advantage and the hybrid
solver for DQM where utilized in their first version, suggesting space for near-term
efficiency improvements.
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4.3.1 Threats to validity

Although already partiallymentioned in the previous discussions, this section provides
a structured review of the threads to validity following the scheme of [31].

Construct validity. To assess the current potential of quantum computing for the
k-community detection problem, existing and novel algorithms have been utilized.
However, varying parameters in the hybrid algorithms or optimizing pre- and post-
processing of each quantum query [21] could affect the obtained results. These effects
are not within the scope of this work, because hybrid applications for practical usage
require automatized parameter settings. Therefore, the automatic parameter setting by
the vendors has been used or a conscious setting of the given parameters has been
conducted (e.g., a subset size of 12 to account for ancillary qubits [21]).

Internal validity. Concerning the obtainedmodularity results of the substitution with
simulated annealing, we regard the quality of the IBMQ Melbourne as the prevail-
ing cause. However, there is still the possibility of leveling of poor results by the
hybrid algorithm. As the research question concerns only the affect within the hybrid
algorithm, the quality of the QAOA results has not been further investigated.

External validity. The proposed hybrid algorithms should be considered just as pro-
totypes of possible quantum computing approaches for tackling the k-community
detection problem. The mentioned specificity and dependence on the given problem,
the parameter setting, as well as the underlying quantum parts make generalizing a
difficult endeavor. In this sense, QAOA and quantum annealing are still to be consid-
ered in an early stage where their characteristics are being figured out currently (e.g.,
[38], [22]) and improvements are made on a regular basis (e.g., [39], [7]). For this rea-
sons, we expect the algorithms to show similar performance when applied to similar
problem instances as those examined in this work. However, we cannot state further
generalizations as a sound sensitivity analysis is not within the scope of this paper,
but may be a subject of future work. Furthermore, in the first part of this evaluation,
no statements concerning the scaling of the proposed algorithms are made. Account-
ing for the criticism in [12], we stated the graph features carefully and varied certain
parameters only while keeping others stable to ensure a higher degree of causality.
Specific details are stated in previous sections and in the appendix.

Reliability. Although dealing with heuristic algorithms, which are stochastic in
nature, we specified the used technologies and methodology in detail and provide
all code and raw data on Github [17] for reproducibility. In order to be able to state
statistically significant results, the Wilcoxon ranksum test has been applied.

5 Conclusion

In this paper, we have evaluated the potential of current NISQ devices for the
k-community detection problem. Therefore, we have proposed novel hybrid algo-
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Table 6 Results at a glance

RQ Answer

RQ1 GB1: based on local graph density, iteratively finds strongest community

GB2: recursive application of QLS-algorithm, best for 2x communities

RQ2 Modularity: QA performs best, GB1 & GB2 similar to classical solver

Time-to-solution: significantly higher for all quantum methods

RQ3 Modularity: no significant difference

Time-to-solution: significantly less with simulated annealing

RQ4 Modularity: similar; Time-to-solution: significantly higher for QA

rithms for gate-model devices and compared their performance to existing quantum
annealing-based approaches and a state-of-the-art classical heuristic solver.We ran our
experiments on the 15 qubit IBMQ Melbourne and the D-Wave Advantage devices.
Furthermore, the quantum processing parts have been substituted with simulated
annealing to obtain information concerning the impact of quantum computing within
the hybrid algorithms. The obtained answers to the given research questions are sum-
marized in Table 6.

Considering the modularity obtained with the various methods on the Zachary
Karate Club Graph (RQ2), the QA1 which utilizes the D-Wave hybrid solver for dis-
crete quadratic models performs best. GB1 and GB2 show no significant difference to
the classical benchmark method (Louvain algorithm). The substitution with simulated
annealing (RQ3) does not yield any significant difference in modularity, whereas the
time-to-solution is notably decreased.

Utilizing the hybrid solver for discrete quadratic models provided by D-Wave, we
were able to obtain modularity values similar to those of the Louvain algorithm, but
got much longer time-to-solution values (RQ4). Furthermore, the results show that
not only the graph size and density should be considered in the evaluation due to
the significant impact of other factors which are related to the underlying community
structure. These may be highly specific to each utilized algorithm.

Overall, quantum computing for the k-community detection problem has been fig-
ured out to yield good modularity values for small graphs, but still the computation
times are too high to be of practical relevance. Given the current and near-term hard-
ware limitations, we consider versatile and modularizable hybrid quantum classical
algorithms, like the ones outlined, to be crucial for proceeding toward practical usage
of NISQ devices, and therefore, for justification of quantum computing in general. As
the potential of available NISQ devices increases, we are optimistic that similar meth-
ods can lead to a broad utilization of quantum computing to a variety of real-world
applications.

Future Work: We are currently experimenting with quantum algorithms other than
QAOA, such as the Grover Adaptive Search [15], in our proposed hybrid algorithms.
Furthermore, we are working on a concept, how to model the use of these algorithms
according to Model Driven Software Engineering principles [5]. In this sense, we will
investigate how to reuse existing algorithms for a particular problem, but also how
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to model the hybrid workflows of solving combinatorial optimization problems on
NISQ devices. The scalability and specificity of the proposed algorithms may be an
additional subject of further studies.
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6 Appendix

This section providesmore details concerning the hardware and software used through-
out the experiments as well as timing information concerning the utilized quantum
systems. Furthermore, information about the generated benchmark graphs is given.
The reason for choosing 5 times as the number of repetitions for each constellation is
twofold. First, one run on the IBM hardware needs an effective time of approx. one
day. Second, this number allowed the evaluation utilizing D-Wave technology without
the necessity to acquire extensive computation time.
D-Wave systems:
For QA1, the Hybrid Solver Service provided by D-Wave has been utilized, which
allows to directly address discrete quadratic models (DQM) [26]. The hybrid solvers
implement state-of-the-art classical algorithms together with intelligent allocation of
the quantum processing unit. This high degree of automation comes with a lack of
adjustable parameters and transparency. The hybrid DQM solver version 1 can read
discrete problems with up to a maximum of 2 billion total input weights [26]. Like
with the other hybrid solvers offered by D-Wave, queries can be sent to the Advantage
quantum processing unit. This quantum device has been launched in September 2020
and contains 5000 qubits, which is about 2.5 times more than in its predecessor, the D-
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Wave 2000Q. Another important difference lies in the connectivity enhancing Pegasus
typology of the device, which comes with 15 couplers per qubit instead of 6 [24]. The
Advantage-System 1.1 has been used throughout this project. The time per instance
sent to the D-Wave Advantage within QA2 is defined as the QPU access time plus an
post-processing overhead time, where the QPU access time consists of the following
[35].

qpu_access_time = qpu_programming_t ime

+N ∗ (annealing_time + delay_time + readout_t ime)

The first is a one-time initialization step to program the QPU once per call. N denotes
the number of samples which linearly impacts the QPU sampling time. The adjustable
parameters for the experiments have been set to the default values according toD-Wave
Hybrid 0.6.1 Documentation (N = 100, annealing_t ime = 20μs). Adjustment of
these parameters may lead to significant changes in the overall performance of the
QA2 but has not been studied within this project.
IBM systems:
The Qiskit library is an open-source framework which allows to work with IBM quan-
tum computers2. For the experiments, Qiskit 0.23.2 has been used. Within Qiskit, the
Qiskit Aqua software tool represents the element of the library for building algorithms
and applications such as QAOA. The IBM Melbourne quantum computer consists of
15 qubits and reaches a quantum volume of 8. It therefore cannot be regarded a state-
of-the-art quantum computer (e.g., IBM claimed to have reached a quantum volume
of 64 with a 27 qubits system in August 20203). However, it represents the most
powerful device which is publicly available. Version 2.3.4 has been used throughout
this project. The time-to-solution of GB1 and GB2 heavily depends on the parameters
of the QLS algorithm. Varying the size of the subsets and the convergence criterion
significantly impacts the number of iterations and therefore should have an effect on
the time-to-solution metric. However, smaller subsets may also lead to faster results
per iteration on the quantum computer. Furthermore, the implementation using the
MinimumEigenOptimizer creates multiple equal jobs for one optimization problem
with 1024 shots each. An alternative implementation like the one provided on Github
[17] may be more efficient in that sense. A further possibility of improving the QAOA
efficiency is via tensor-network based approaches which allow classical training of
certain QAOA instances [34] . In this project, only the running time of the instances
sent to the IBM device has been considered. The queuing, validation, and creation
times have been omitted.
Artificially generated benchmark graphs:
The planted l-partition model partitions a graph with n = g ∗ l nodes into l groups
consisting of g vertices each. The nodes within one group are linked with probability
pin , whereas the nodes of different groups are linked with probability pout . Therefore,
the averagedegree of a node canbe calculated via 〈k〉 = pin∗(g−1)+pout∗g∗(l−1) =
2 https://qiskit.org/.24.06.2021
3 https://newsroom.ibm.com/2020-08-20-IBM-Delivers-Its-Highest-Quantum-Volume-to-Date-
Expanding-the-Computational-Power-of-its-IBM-Cloud-Accessible-Quantum-Computers.24.06.2021
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zin + zout with zin = pin(g − 1) and zout = pout ∗ g ∗ (l − 1). If pin > pout , the
intra-group edge density exceeds the inter-group edge density and the graph shows a
community structure [12]. For the graphs in this paper the following parameters have
been used to ensure a stable ratio of pin

pout
and a relatively stable average degree:

– PP100: l = 5, g = 20, pin = 0.8, pout = 0.16 → pin = 5 ∗ pout , zin =
15.2, zout = 12.8, 〈k〉 = 28

– PP246: l = 6, g = 41, pin = 0.3, pout = 0.06 → pin = 5 ∗ pout , zin =
12, zout = 12.3, 〈k〉 = 24.3

– PP496: l = 8, g = 62, pin = 0.18, pout = 0.036 → pin = 5 ∗
pout , zin = 10.98, zout = 15.62, 〈k〉 = 26.6

– PP747: l = 9, g = 83, pin = 0.125, pout = 0.025 → pin = 5 ∗
pout , zin = 10.25, zout = 16.6, 〈k〉 = 26.85

– PP1000: l = 20, g = 50, pin = 0.1, pout = 0.02 → pin = 5 ∗
pout , zin = 4.9, zout = 19, 〈k〉 = 23.9

– PP1500: l = 15, g = 100, pin = 0.075, pout = 0.015 → pin = 5 ∗
pout , zin = 7.425, zout = 21, 〈k〉 = 28.425

The LFR-benchmark graph is more heterogeneous than the planted l-partition graph,
assuming that the distributions of degree and community size follow power laws, with
exponents τ1 and τ2. The mixing parameter μ (0 ≤ μ ≤ 1) denotes the fraction of
a node’s edges which it shares with nodes of other communities [12]. The parameter
values for typical networks are reported [20] to be 2 ≤ τ1 ≤ 3 and 1 ≤ τ2 ≤ 2. To
ensure similar properties compared to the planted l-partition graph, a parameter fit has
been conducted. The parameters used for the experiments are:

– LFR100: τ1 = 2.5, τ2 = 1.5, μ = 0.17, 〈k〉 = 28
– LFR246: τ1 = 2.5, τ2 = 1.5, μ = 0.17, 〈k〉 = 24.3
– LFR496: τ1 = 2.5, τ2 = 1.5, μ = 0.17, 〈k〉 = 26.6
– LFR747: τ1 = 2.5, τ2 = 1.5, μ = 0.17, 〈k〉 = 26.85
– LFR1000: τ1 = 2.5, τ2 = 1.5, μ = 0.17, 〈k〉 = 23.9
– LFR1500: τ1 = 2.5, τ2 = 1.5, μ = 0.17, 〈k〉 = 28.425
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