Skip to main content
Log in

An efficient semi-quantum private comparison without pre-shared keys

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semi-quantum private comparison protocol permits two classical participants to compare the equality of their private information with the help of a semi-honest third party without disclosing privacy. An innovative semi-quantum private comparison protocol based on maximally entangled Greenberger–Horne–Zeilinger-type states has been discussed. The proposed protocol is efficient and without the pre-shared keys. Next, the security analysis guarantees the presented protocol is asymptotically secure against the outsider and the insider attacks. Moreover, the qubit efficiency of the presented protocol is 3.125%. The efficiency comparison shows that it improves the efficiency by 125% for the literature without pre-shared keys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

  2. Liu, X., Hersam, M.C.: 2D materials for quantum information science. Nat. Rev. Mater. 4(10), 669–684 (2019)

    Article  ADS  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  4. Li, L.L., Li, J., Li, C.Y., et al.: Deterministic quantum secure direct communication protocol based on Omega state. IEEE Access 7, 6915–6921 (2019)

    Article  Google Scholar 

  5. Dong, Y., Wang, Y.K., Yuan, F., et al.: Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15(8), 668–674 (2020)

    Article  ADS  Google Scholar 

  6. Williams, B.P., Lukens, J.M., Peters, N.A., et al.: Quantum secret sharing with polarization- entangled photon pairs. Phys. Rev. A 99(6), 062311 (2019)

    Article  ADS  Google Scholar 

  7. Yao, A.C.: Protocols for secure computation. In: Proceeding of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  8. Dou, Z., Xu, G., Chen, X.B., et al.: Rational protocol of quantum secure multi-party computation. Quantum Inf. Process. 17(8), 1–22 (2018)

    Article  MathSciNet  Google Scholar 

  9. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Siam Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. Math. Theor. 42(5), 30 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Li, Y.B., Qin, S.J., Yuan, Z., et al.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191–2205 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  12. Li, Y.B., Wang, T.Y., Chen, H.Y., et al.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52, 2818–2825 (2013)

    Article  MathSciNet  Google Scholar 

  13. Li, C.Y., Chen, X.B., Li, H.J., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  14. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501.1-140501.4 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  16. Wang, M.M., Gong, L.M., Shao, L.H.: Efficient semi-quantum key distribution without entanglement. Quantum Inf. Process. 18(9), 1–10 (2019)

    ADS  Google Scholar 

  17. Tian, Y., Li, J., Yuan, K.G., et al.: An efficient semi-quantum key distribution protocol based on EPR and single-particle hybridization. Quantum Inf. Comput. 7–8, 563–576 (2021)

    MathSciNet  Google Scholar 

  18. Yang, C.W., Tsai, C.W.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 1–13 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  19. Li, Q., Chan, W.H., Long, D.Y.: Semi-quantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  20. Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20, 217 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  21. Chou, W., H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/160707961.pdf (2016)

  22. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  25. Efficient semi-quantum private comparison using single photons: Lin, P., H., Hwang, T., Tsai, C., W. Quantum Inf. Process. 18, 1–14 (2019)

    Article  Google Scholar 

  26. Yan, L.L., Zhang, S.B., Chang, Y., et al.: Semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 20(1), 1–16 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  28. Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  29. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 92046001, 61962009, the Fundamental Research Funds for the Central Universities under Grant 2019XD-A02, the Open Research Project of the State Key Laboratory of Media Convergence and Communication under Grant KLMCC2020KF006. We also would like to thank the anonymous reviewers for their detailed review and valuable comments, which have enhanced the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, J., Chen, XB. et al. An efficient semi-quantum private comparison without pre-shared keys. Quantum Inf Process 20, 360 (2021). https://doi.org/10.1007/s11128-021-03294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03294-8

Keywords

Navigation