Skip to main content
Log in

Cluster-state-based quantum secret sharing for users with different abilities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The four-qubit cluster state has a more robust entanglement property than other four-particle states. Empowered by the 4-qubit cluster state and Bell state entanglement, two quantum secret sharing (QSS) protocols are proposed in this paper. The first protocol is with the quantum users who can perform Bell measurement. The second protocol is with classical users who only can perform Z basis measurement and is also known as semi-quantum secret sharing (SQSS). Moreover, the security analysis shows the proposed QSS and SQSS protocols can achieve full security and resist some common eavesdropping attacks, such as interception attack, measure-resend attack, entanglement-measure attack, and Trojan horse attack. Meanwhile, the efficiency comparison shows that the proposed protocols are also efficient than other similar protocols with relate to the qubit efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6(1), 1–10 (2016)

    MathSciNet  Google Scholar 

  4. Li, J., Li, H.J., Wang, N., Li, C.Y., Hou, Y.Y., Chen, X.B., Yang, Y.G.: A quantum key distribution protocol based on the EPR Pairs and its simulation. Mob. Netw. Appl. 26, 620–628 (2021)

    Article  Google Scholar 

  5. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  6. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22(6), 063017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Li, C., Chen, X.B., Li, H., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 1–12 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ye, C.Q., Li, J., Cao, Z.W.: A class of protocols for multi-party quantum private comparison based on traveling mode. Quantum Inf. Process. 20(2), 1–18 (2021)

    MathSciNet  Google Scholar 

  10. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing[J]. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  ADS  Google Scholar 

  13. Wang, W., Zhou, B.M., Zhang, L.: The three-party quantum key agreement protocol with quantum fourier transform. Int. J. Theor. Phys. 59, 1944–1955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hajji, H., El Baz, M.: Qutrit-based semi-quantum key distribution protocol. Quantum Inf. Process. 20(1), 1–25 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gu, J., Lin, P., Hwang, T.: Double C-NOT attack and counterattack on Three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 1–8 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59(6), 1807–1819 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, L.Z.: Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 19(6), 1–21 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ye, C.Q., Li, J., Chen, X.B., et al.: Efficient semi-quantum private comparison without using entanglement resource and pre-shared key. Quantum Inf. Process. 20(8), 1–19 (2021)

    MathSciNet  Google Scholar 

  20. Zhou, N.R., Xu, Q.D., Du, N.S., et al.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process. 20(3), 1–15 (2021)

    Article  MathSciNet  Google Scholar 

  21. Li, Q., Chan, W.H., Long, D.Y.: Semi-quantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  22. Ye, C.Q., Ye, T.Y.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(6), 661 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20(6), 1–11 (2021)

    Article  MathSciNet  Google Scholar 

  24. Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 265–273 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, W.J., Chen, Z.Y., Ji, S., et al.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, H.H., Gong, L.H., Zhou, N.R.: New semi-quantum key agreement protocol based on high-dimensional single-particle states. Chinese Phys. B 29(11), 110304 (2020)

    Article  ADS  Google Scholar 

  27. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019 (2010)

    Article  MATH  Google Scholar 

  29. Grice, W.P., Qi, B.: Quantum secret sharing using weak coherent states. Phys. Rev. A 100(2), 022339 (2019)

    Article  ADS  Google Scholar 

  30. Liao, Q., Liu, H., Zhu, L., et al.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103(3), 032410 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  32. Cao, H., Ma, W.P.: (t, n) Threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics J. 9(1), 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  33. Qin, H., Tso, R.: Threshold quantum state sharing based on entanglement swapping. Quantum Inf. Process. 17(6), 1–11 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lie, S.H., Choi, S., Jeong, H.: Min-entropy as a resource for one-shot private state transfer, quantum masking, and state transition. Phys. Rev. A 103(4), 042421 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Modern Phys. Lett. B 31(13), 1750150 (2017)

    Article  ADS  Google Scholar 

  38. Yin, A.H., Tong, Y.: A novel semi-quantum secret sharing scheme using entangled states. Modern Phys. Lett. B 32(22), 1850256 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Li, Z., Li, Q., Liu, C., et al.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17(10), 1–11 (2018)

    Article  ADS  MATH  Google Scholar 

  40. Cao, G., Chen, C., Jiang, M.: A scalable and flexible multi-user semi-quantum secret sharing. Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering. 28-32, (2018)

  41. Tsai, C.W., Yang, C.W., Lee, N.Y.: Semi-quantum secret sharing protocol using W-state. Modern Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  43. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 686-690 (2015)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 92046001, 61962009, the Fundamental Research Funds for the Central Universities under Grant 2019XD-A02, the Doctor Scientific Research Fund of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ye, C., Tian, Y. et al. Cluster-state-based quantum secret sharing for users with different abilities. Quantum Inf Process 20, 385 (2021). https://doi.org/10.1007/s11128-021-03327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03327-2

Keywords

Navigation