Skip to main content
Log in

Deterministic secure quantum communication based on spatial encoding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Deterministic secure quantum communication (DSQC) is an important primitive of quantum cryptography and has attracted continuous attention. Here, we report the first DSQC protocol based on spatial encoding. The qubit information is encoded in the spatial-mode degree of freedom of photons. A decoy state technique is used to ensure the security of the DSQC protocol. We also analyze the security of the DSQC protocol and show that it is secure against common attacks such as the interception-and-retransmission attack and general entanglement–measurement attack. Without the use of the polarization state of photons, it avoids the degeneration of the states of photons so that it is suitable for long-distance quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  2. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60(1), 157–166 (1999)

    Article  ADS  Google Scholar 

  3. Beige, A., Englert, B.-G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407–L413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  5. Yan, F.-L., Zhang, X.-Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41(1), 75–78 (2004)

    Article  ADS  Google Scholar 

  6. Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A-Math. Gen. 38(25), 5761–5770 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zhou, R.-G., Zhang, X.X.: Controlled deterministic secure semi-quantum communication. Int. J. Theor. Phys. 60(5), 1767–1782 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, D., Chen, Y.Y., Gu, X.M., Xie, L., Chen, L.J.: Deterministic secure quantum communication using a single d-level system. Sci. Rep. 7, 44934 (2017)

    Article  ADS  Google Scholar 

  10. Yang, Y.-G., Dong, J.-R., Yang, Y.-L., Li, J., Zhou, Y.-H., Shi, W.-M.: High-capacity measurement-device-independent deterministic secure quantum communication. Quantum Inf. Process. 20(6), 203 (2021)

  11. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18–21 (2005)

    Article  ADS  Google Scholar 

  12. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  13. Shaari, J.S., Lucamarini, M., Wahiddin, M.R.B.: Deterministic six states protocol for quantum communication. Phys. Lett. A 358(2), 85–90 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Li, X.-H., Deng, F.-G., Li, C.-Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006)

    Google Scholar 

  15. Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)

    Article  ADS  Google Scholar 

  16. Yuan, H., Song, J.: An efficient deterministic secure quantum communication scheme with Cluster state. Int. J. Quant. Inform. 7(3), 689–696 (2009)

    Article  MATH  Google Scholar 

  17. Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. Chin. Ser. G-Phys. Mech. Astron. 56, 1903–1908 (2013)

    Article  ADS  Google Scholar 

  18. Yuan, H., Zhang, Q., Hong, L., et al.: Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int. J. Theor. Phys. 53(8), 2558–2564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y.-G.: Deterministic secure quantum communication with four-qubit GHZ states. Int. J. Theor. Phys. 57(9), 2831–2842 (2018)

    Article  MATH  Google Scholar 

  20. Tsai, C.-L., Hwang, T.: Secure quantum communication scheme for six-qubit decoherence free states. Int. J. Theor. Phys. 57(12), 3808–3818 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, H., Song, J., Liu, X.-Y., Yin, X.-F.: Deterministic secure four-qubit GHZ states three step protocol for quantum communication. Int. J. Theor. Phys. 58(11), 3658–3666 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, Z., He, Z.: Deterministic secure quantum communication under vacuum fluctuation. Euro. Phys. J. D 74(9), 176 (2020)

    Article  ADS  Google Scholar 

  23. Joy, D., Surendran, S. P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16(6), 157 (2017)

  24. Elsayed, T.A.: Deterministic secure quantum communication with and without entanglement. Phys. Scr. 96(2), 025101 (2021)

  25. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit Cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, Y., Zhang, S.B., Yan, L.L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Chin. Sci. Bull. 59, 2835–2840 (2014)

    Article  Google Scholar 

  27. Yang, Y.-G., Gao, S., Zhou, Y.-H., et al.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. Chin. Ser. G: Phys. Mech. Astron. 52, 1913–1918 (2009)

    Article  ADS  Google Scholar 

  29. Yuan, H., Zhang, Q., Hong, L., Yin, W.-J., Xu, D.: Faithful one-way trip deterministic secure quantum communication scheme against collective rotating noise based on order rearrangement of photon pairs. Int. J. Theor. Phys. 53, 2565–2570 (2014)

    Article  MATH  Google Scholar 

  30. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  31. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  32. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  33. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  34. Sadlier, R.J., Humble, T.S.: superdense coding interleaved with forward error correction. Quantum Meas. Quantum Metrol. 3, 1–8 (2016)

    ADS  Google Scholar 

  35. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019)

    Article  ADS  Google Scholar 

  36. Massa, F., Moqanaki, A., Baumeler, Ä., Del Santo, F., Kettlewell, J.A., Dakic, B., Walther, P.: Experimental two-way communication with one photon. Adv. Quantum Technol. 2, 1900050 (2019)

    Article  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  38. Hu, J.Y., Yu, B., Jing, M. Y., Xiao, L.T., Jia, S.T., Qin, G.Q., and Long, G. L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

  39. Sun, Z., Qi, R., Lin, Z., Yin, L., Long, G., and Lu, J.: Proc. IEEE Globecom Conf. Workshops (Piscataway, NJ: IEEE), pp 1–6 (2018)

  40. Yang, Y.-G., Sun, S.-J., Wang, Y.: Quantum oblivious transfer based on a quantum symmetrically private information retrieval protocol. Int. J. Theor. Phys. 54, 910–916 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y.-G., Sun, S.-J., Pan, Q.-X., Xu, P.: Reductions between private information retrieval and oblivious transfer at the quantum level. Optik 126, 3206–3209 (2015)

    Article  ADS  Google Scholar 

  42. Yang, Y.-G., Sun, S.-J., Pan, Q.-X., Xu, P.: Quantum oblivious transfer based on unambiguous set discrimination. Optik 126, 3838–3843 (2015)

    Article  ADS  Google Scholar 

  43. Yang, Y.-G., Yang, R., Lei, H., Shi, W.-M., Zhou, Y.-H.: Quantum oblivious transfer with relaxed constraints on the receiver. Quantum Inf. Process. 14, 3031–3040 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Yang, Y.-G., Xu, P., Tian, J., et al.: Quantum oblivious transfer with an untrusted third party. Optik 125(18), 5409–5413 (2014)

    Article  ADS  Google Scholar 

  45. Yang, Y.-G., Yang, R., Cao, W.-F., et al.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)

    Article  MATH  Google Scholar 

  46. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  48. Yang, Y.-G., Liu, X.-X., Gao, S., Zhou, Y.-H., Shi, W.-M., Li, J., Li, D.: Detector-device-independent quantum secret sharing based on hyper-encoding and single-photon Bell-state measurement. Quantum Eng. 3, (2021)

    Article  Google Scholar 

  49. Yang, Y.-G., Gao, S., Li, D., et al.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(5), 215 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. Yang, Y.-G., Wang, Y.C., Yang, Y.L., Chen, X.B., Li, D., Y.-H., Shi, W.-M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. China Phys. Mech. Astron. 64(6), 121–124 (2021)

    Article  Google Scholar 

  51. Yang, Y.-G., Liu, X.-X., Gao, S., Chen, X.B., Li, D., Zhou, Y.-H., Shi, W.-M.: A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Inf. Process. 20, 223 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  52. Cao, W.-F., Yang, Y.-G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019). https://link.springer.com/journal/10773

    Article  MathSciNet  MATH  Google Scholar 

  53. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  54. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  55. Cao, W.-F., Yang, Y.-G., Wen, Q.-Y.: Quantum secure direct communication with cluster states. Sci. China Ser. G-Phys. Astron. 53(7), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  56. Zhang, W., Ding, D.S., Sheng, Y.-B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  57. Yang, Y.-G., Gao, S., Zhou, Y.-H., et al.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  59. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A. 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  60. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with x-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yang, Y.G., Lei, H., Liu, Z.C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Yang, Y.G., Liu, Z.C., Li, J., et al.: Theoretically extensible quantum digital signature with star-like cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)

    Article  ADS  Google Scholar 

  63. Jiang, D.-H., Xu, Y.-L., Xu, G.-B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)

    Article  ADS  Google Scholar 

  65. Yang, Y.-G., Sun, S.-J., Xu, P., et al.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  66. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Article  Google Scholar 

  67. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  68. Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)

    Article  ADS  MATH  Google Scholar 

  69. Yang, Y.-G., Liu, Z.C., Chen, X.B., et al.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Yang, Y.-G., Liu, Z.-C., Chen, X.-B., et al.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Phys. Mech. Astron. 60(12), 120311 (2017)

    Article  ADS  Google Scholar 

  71. Yang, Y.-G., Guo, X.-P., Xu, G., et al.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)

    Article  Google Scholar 

  72. Yang, Y.-G., Liu, X.-X., Gao, S., Zhou, Y.-H., Shi, W.-M., Li, J., Li, D.: Towards practical anonymous quantum communication: A measurement-device-independent approach. Phys. Rev. A 104, 052415 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  73. Yang, Y.-G., Yang, Y.-L., Lv, X.-L., Zhou, Y.-H., Shi, W.-M.: Examining the correctness of anonymity for practical quantum networks. Phys. Rev. A 101, 062311 (2020)

    Article  ADS  Google Scholar 

  74. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  75. Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., Shi, W.-M., Chen, X.-B., Li, J., Zuo, H.-J.: Quantum network communication: A discrete-time quantum-walk approach. Sci. China Inf. Sci. 61, 042501 (2018)

    Article  MathSciNet  Google Scholar 

  76. Yang, Y.-G., Li, B.-R., Li, D., Zhou, Y.-H., Shi, W.-M.: New quantum key agreement protocols based on Bell states. Quantum Inf. process. 18(10), 322 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  77. Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. process. 18(3), 74 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Yang, Y.-G., Li, B.-R., Kang, S.-Y., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: New quantum key agreement protocols based on cluster states. Quantum Inf. process. 18(2), 77 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62071015, 62171264); the China Social Security Foundation (No. 6009258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, YG., Li, J. et al. Deterministic secure quantum communication based on spatial encoding. Quantum Inf Process 21, 2 (2022). https://doi.org/10.1007/s11128-021-03330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03330-7

Keywords

Navigation