Skip to main content
Log in

Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Various quantum algorithms depend on quantum phase estimation (QPE) as basic blocks or main subroutines to leverage superposition and entanglement during quantum computations. The QPE algorithm estimates the unknown phase of an eigenvalue corresponding to an eigenstate of an arbitrary unitary operator. We propose the photonic scheme of a QPE scheme comprising controlled-unitary gates based on quantum dots confined in optical cavities. For the reliable performance of the proposed QPE scheme constituting an arrangement of controlled-unitary gates, we evaluate the proposed quantum dot system under the effects of vacuum noise and leaky modes in an experimental implementation of the gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings, 35th Annual Symposium on Foundations of Computer Science, p. 124 (1994)

  2. Lanyon, B.P., Weinhold, T.J., Langford, N.K., Barbieri, M., James, D.F.V., Gilchrist, A., White, A.G.: Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007)

  3. Martin-Lopez, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’Brien, J.L.: Experimental realization of Shor’s quantum factoring algorithm using qubit recycling. Nat. Photonics 6, 773 (2012)

    Article  ADS  Google Scholar 

  4. Monz, T., Nigg, D., Martinez, E.A., Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R.: Realization of a scalable Shor algorithm. Science 351, 1068 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Peng, W.C., Wang, B.N., Hu, F., Wang, Y.J., Fang, X.J., Chen, X.Y., Wang, C.: Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Sci. China-Phys. Mech. Astron. 62, 60311 (2019)

    Article  ADS  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  7. Mosca, M., Zalka, C.: Exact quantum Fourier transforms and discrete logarithm algorithms. Int. J. Quantum Inf. 2, 91 (2004)

    Article  MATH  Google Scholar 

  8. Song, S.Y.: Quantum Computing for Discrete Logarithms. Quantum Computational Number Theory. Springer, Cham, p. 121 (2015)

  9. Michele, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: Quantum Computing and Quantum Communications. Springer, Berlin, p. 174 (1999)

  10. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Comput. Sci. Eng. 3, 34 (2001)

    Article  Google Scholar 

  11. Gonçalves, D.N., Fernandes, T.D., Cosme, C.M.M.: An efficient quantum algorithm for the hidden subgroup problem over some non-abelian groups. TEMA 18, 215 (2017)

    Article  MathSciNet  Google Scholar 

  12. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem. Electron. Colloq. Comput. Complex. 3 (1996)

  13. Knill, E., Ortiz, G., Somma, R.D.: Optimal quantum measurements of expectation values of observables. Phys. Rev. A 75, 012328 (2007)

  14. Svore, K.M., Hastings, M.B., Freedman, M.: Faster phase estimation. Quant. Inf. Comput. 14, 306 (2013)

    MathSciNet  Google Scholar 

  15. Paesani, S., Gentile, A.A., Santagati, R., Wang, J., Wiebe, N., Tew, D.P., O’Brien, J.L., Thompson, M.G.: Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017)

  16. O’Brien, T.E., Tarasinski, B., Terhal, B.M.: Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys. 21, 023022 (2019)

  17. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Photonic scheme of quantum phase estimation for quantum algorithms via cross-Kerr nonlinearities under decoherence effect. Opt. Express 27, 31023 (2019)

    Article  ADS  Google Scholar 

  18. Griffiths, R.B., Niu, C.S.: Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett. 76, 3228 (1996)

    Article  ADS  Google Scholar 

  19. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 339 (1998)

  20. Dobšíček, M., Johansson, G., Shumeiko, V., Wendin, G.: Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys. Rev. A 76, 030306(R) (2007)

    Article  ADS  Google Scholar 

  21. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  ADS  Google Scholar 

  22. Kimmel, S., Low, G.H., Yoder, T.J.: Robust calibration of a universal single-qubit gate set via robust phase estimation. Phys. Rev. A 92, 062315 (2015)

  23. O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

  24. McClean, J.R., Romero, J., Babbush, R., AspuruGuzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016)

  25. Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106 (2010)

    Article  Google Scholar 

  26. Du, J., Xu, N., Peng, X., Wang, P., Wu, S., Lu, D.: NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett. 104, 030502 (2010)

  27. Santagati, R., Wang, J., Gentile, A.A., Paesani, S., Wiebe, N., McClean, J.R., Morley-Short, S.R., Shadbolt, P.J., Bonneau, D., Silverstone, J.W., Tew, D.P., Zhou, X., OBrien, J.L., Thompson, M.G.: Quantum simulation of Hamiltonian spectra on a silicon chip. arXiv: 1611.03511v3

  28. Rubin, M.A., Kaushik, S.: Loss-induced limits to phase measurement precision with maximally entangled states. Phys. Rev. A 75, 053805 (2007)

  29. Wiebe, N., Granade, C.: Efficient Bayesian phase estimation. Phys. Rev. Lett. 117, 010503 (2016)

  30. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  31. Colless, J.I., Ramasesh, V.V., Dahlen, D., Blok, M.S., Kimchi-Schwartz, M.E., McClean, J.R., Carter, J., De Jong, W.A., Siddiqi, I.: Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X 8, 011021 (2018)

  32. Heo, J., Choi, S.G.: Toffoli gate with photonic qubits based on weak cross-Kerr nonlinearities. Quantum Inf. Process. 20, 345 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. Sahota, J., Quesada, N., James, D.F.V.: Physical resources for optical phase estimation. Phys. Rev. A 94, 033817 (2016)

  34. Lee, S.W., Lee, S.Y., Kim, J.: Optimal quantum phase estimation with generalized multi-component Schrödinger cat states. J. Opt. Soc. Am. B 37, 2423 (2020)

    Article  ADS  Google Scholar 

  35. Heo, J., Choi, S.G.: Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 11, 10423 (2021)

    Article  ADS  Google Scholar 

  36. Chow, J.M., Gambetta, J.M., Córcoles, A.D., Merkel, S.T., Smolin, J.A., Rigetti, C., Poletto, S., Keefe, G.A., Rothwell, M.B., Rozen, J.R., Ketchen, M.B., Steffen, M.: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)

  37. Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 7, 373 (2013)

    Article  ADS  Google Scholar 

  38. Luo, M.X., Wang, X.: Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities. Sci. Rep. 4, 5732 (2014)

    Article  Google Scholar 

  39. Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014)

    Article  ADS  Google Scholar 

  40. Hu, C.Y.: Photonic transistor and router using a single quantum-dot confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)

    Article  ADS  Google Scholar 

  41. Rosenblum, S., Gao, Y.Y., Reinhold, P., Wang, C., Axline, C.J., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018)

    Article  ADS  Google Scholar 

  42. Heo, J., Won, K., Yang, H.J., Hong, J.P., Choi, S.G.: Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots. Sci. Rep. 9, 12440 (2019)

    Article  ADS  Google Scholar 

  43. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J.: Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots. Quantum Inf. Process. 18, 216 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. Heo, J., Hong, C., Choi, S.G., Hong, J.P.: Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot. Sci. Rep. 9, 10151 (2019)

    Article  ADS  Google Scholar 

  45. Kang, M.S., Heo, J., Choi, S.G., Sung, M., Han, S.W.: Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep. 10, 5123 (2020)

    Article  ADS  Google Scholar 

  46. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  47. Greilich, A., Yakovlev, D.R., Shabaev, A., Efros, A.L., Yugova, I.A., Oulton, R., Stavarache, V., Reuter, D., Wieck, A., Bayer, M.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341 (2006)

    Article  ADS  Google Scholar 

  48. Xu, X., Yao, W., Sun, B., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105 (2009)

    Article  ADS  Google Scholar 

  49. Press, D., De Greve, K., McMahon, P.L., Ladd, T.D., Friess, B., Schneider, C., Kamp, M., Hofling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367 (2010)

    Article  ADS  Google Scholar 

  50. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

  51. Kawakami, E., Scarlino, P., Ward, D.R., Braakman, F.R., Savage, D.E., Mark Friesen, M.G., Coppersmith, S.N., Eriksson, M. A., Vandersypen, L.M.K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666 (2014)

  52. Elzerman, J.M., Hanson, R., Willems van Beveren, L.H., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431 (2004)

  53. Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G., Finley, J.J.: Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81 (2004)

    Article  ADS  Google Scholar 

  54. Golovach, V.N., Khaetskii, A., Loss, D.: Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004)

  55. Hu, C.Y., Rarity, J.G.: Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot. Phys. Rev. B 91, 075304 (2015)

  56. Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems” Phys. Rev. Lett. 96, 153601 (2006)

  57. Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304(R) (2007)

    Article  ADS  Google Scholar 

  58. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)

  59. Li, T., Gao, J.C., Deng, F.G., Long, G.L.: High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities. Ann. Phys. 391, 156 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  60. Scully, M., Zubairy, M.: Cavity QED implementation of the discrete quantum Fourier transform. Phys. Rev. A 65, 052324 (2002)

  61. Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. Korean Phys. Soc. 53, 1787 (2008)

    Article  ADS  Google Scholar 

  62. Loock, P.V., Munro, W.J., Nemoto, K., Spiller, T.P., Ladd, T.D., Braunstein, S.L., Milburn, G.L.: Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008)

  63. Wang, H.F., Zhang, S., Zhu, A.D., Yeon, K.H.: Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities. J. Opt. Soc. Am. B 29, 1078 (2012)

    Article  ADS  Google Scholar 

  64. Dong, L., Xiu, X.M., Shen, H.Z., Gao, Y.J., Yi, X.X.: Quantum Fourier transform of polarization photons mediated by weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 30, 2765 (2013)

    Article  ADS  Google Scholar 

  65. Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect. Quantum Inf. Process. 15, 4955 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  67. Hu, Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

  68. Hu, Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

  69. Gao, W.B., Fallahi, P., Togan, E., Delteil, A., Chin, Y.S., Miguel-Sanchez, J., Imamoglu, A.: Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013)

    Article  ADS  Google Scholar 

  70. Kuhlmann, A.V., Prechtel, J.H., Houel, J., Ludwig, A., Reuter, D., Wieck, A.D., Warburton, R.J.: Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)

    Article  ADS  Google Scholar 

  71. Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)

    Article  ADS  Google Scholar 

  72. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  73. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200 (2004)

    Article  ADS  Google Scholar 

  74. De Greve, K., Press, D., McMahon, P.L., Yamamoto, Y.: Ultrafast optical control of individual quantum dot spin qubits. Rep. Prog. Phys. 76, 092501 (2013)

  75. Dory, C., Fischer, K.A., Müller, K., Lagoudakis, K.G., Sarmiento, T., Rundquist, A., Zhang, J.L., Kelaita, Y., Vučković, J.: Complete coherent control of a quantum dot strongly coupled to a nanocavity. Sci. Rep. 6, 25172 (2016)

    Article  ADS  Google Scholar 

  76. Heo, J., Hong, C., Kang, M.S., Yang, H.J.: Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 10, 15334 (2020)

    Article  ADS  Google Scholar 

  77. Reithmaier, J.P., Sęk, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197 (2004)

    Article  ADS  Google Scholar 

  78. Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., Fält, S., Hu, E.L., Imamoğlu, A.: Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  79. Bayer, M., Forchel, A.: Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 65, 041308(R) (2002)

  80. Arnold, C., Loo, V., Lemaître, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P., Lanco, L.: Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200000. Appl. Phys. Lett. 100, 111111 (2012)

  81. Reitzensteina, S., Hofmann, C., Gorbunovb, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150,000. Appl. Phys. Lett. 90, 251109 (2007)

  82. Emary, C., Xu, X.D., Steel, D.G., Saikin, S., Sham, L.J.: Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration. Phys. Rev. Lett. 98, 047401 (2007)

  83. Chen, P.C., Piermarocchi, C., Sham, L.J., Gammon, D., Steel, D.G.: Theory of quantum optical control of a single spin in a quantum dot. Phys. Rev. B 69, 075320 (2004)

  84. Berezovsky, J., Mikkelsen, M.H., Gywat, O., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916 (2006)

    Article  ADS  Google Scholar 

  85. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349 (2008)

    Article  ADS  Google Scholar 

  86. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218 (2008)

    Article  ADS  Google Scholar 

  87. Pedri, P., Pitaevskii, L., Stringari, S., Fort, C., Burger, S., Cataliotti, F.S., Maddaloni, P., Minardi, F., Inguscio, M.: Expansion of a coherent array of Bose–Einstein condensates. Phys. Rev. Lett. 87, 227401 (2001)

  88. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A.D.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

  89. Gerardot, B.D., Brunner, D., Dalgarno, P.A., Ohberg, P., Seidl, S., Kroner, M., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: Optical pumping of a single hole spin in a quantum dot. Nature 451, 441 (2008)

    Article  ADS  Google Scholar 

  90. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wust, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A Coherent Single-Hole Spin in a Semiconductor. Science 325, 70 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1C1C2003302), by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1006167), by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A1A12047945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Choi, SG. Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots. Quantum Inf Process 21, 6 (2022). https://doi.org/10.1007/s11128-021-03335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03335-2

Keywords

Navigation