Skip to main content
Log in

Cheating identifiable (kn) threshold quantum secret sharing scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Threshold quantum secret sharing (TQSS) is a quantum cryptography technique that is used to split and reconstruct secret information. It is an important tool for ensuring information security and data confidentiality in the quantum communication environment. TQSS is mainly used to solve the problems of absence and dishonesty among participants. However, most existing TQSS can only detect the fact that one or more of the participants are cheating, and they cannot identify who is the cheater. In this paper, we propose a cheating identifiable (kn) TQSS scheme on a single d-level quantum system. The dealer, Alice, performs a unitary transformation on two identical initial quantum states and signs one of the states. Then, she sends them to the first participant. After the quantum message is validated, the first participant performs his particular unitary transformation on two quantum states. Our scheme employs the voting mechanism, which not only has the ability to identify cheaters but also resists several typical attacks as well as denial and forgery attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179. IEEE, New York (1984)

  2. Susan, L., William K., W.: Protecting Information: From Classical Error Correction to Quantum Cryptography. Cambridge: Cambridge University Press (2006)

  3. Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16, 304 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  4. Musanna, F., Kumar, S.: A novel three-party quantum secret sharing scheme based on Bell state sequential measurements with application in quantum image sharing. Quantum Inf. Process. 19, 348 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  5. Li, H.W., Xu, Z.M., Yin, Z.Q., Cai, Q.Y.: Security of practical quantum key distribution with weak-randomness basis selection. Phys. Rev. A 102, 022605 (2020)

    Article  ADS  Google Scholar 

  6. Li, L., Li, Z.: A verifiable multiparty quantum key agreement based on bivariate polynomial. Inf. Sci. 521, 343–349 (2020)

    Article  MathSciNet  Google Scholar 

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Wang, M.M., Qu, Z., Gong, L.: Improved quantum secret sharing scheme based on GHZ states. IJCSE. 21, 106060 (2020)

    Google Scholar 

  9. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302 (2015)

    Article  ADS  Google Scholar 

  10. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: Using single states instead of entanglement. Phys. Rev. A 92, 030301 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  11. Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum \((k, n)\)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)

    Article  MathSciNet  Google Scholar 

  12. Yang, Y., Wen, Q.: Threshold quantum secret sharing between multi-party and multi-party. Sci. Chin. Ser. G-Phys. Mech. Astron. 51, 1308–1315 (2008)

    Article  ADS  Google Scholar 

  13. Yuuki, T., Tatsuaki, O., Nobuyuki, I.: Threshold quantum cryptography. Phys. Rev. A 71, 012314 (2005)

    Article  Google Scholar 

  14. Richard, C., Daniel, G., Hoi-Kwong, L.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  Google Scholar 

  15. Lai, H., Pieprzyk, J., Luo, M.X., Zhan, C., Pan, L., Orgun, M.: High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels. Quantum Inf. Process. 19, 10.1007 (2020)

    MathSciNet  Google Scholar 

  16. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum \((k, n)\)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  Google Scholar 

  17. Song, X.L., Liu, Y.B.: Cryptanalysis and improvement of verifiable quantum \( (k, n) \) secret sharing. Quantum Inf. Process. 15, 851–868 (2016)

    Article  MathSciNet  Google Scholar 

  18. Qin, H.W., Dai, Y.W.: Verifiable \( (t, n) \) threshold quantum secret sharing using d-dimensional Bell state. Inf. Process. Lett. 116, 351–355 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lu, C., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17, 310 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  20. Cao, W.F., Yang, Y.G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58, 1202–1214 (2019)

    Article  MathSciNet  Google Scholar 

  21. Lu, C., Miao, F., Hou, J., Huang, W., Xiong, Y.: A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security. Quantum Inf. Process. 19, 24 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kurosawa, K., Obana, S., Ogata, W.: \( t \)-cheater identifiable \( (k,n) \) threshold secret sharing Schemes. In: Coppersmith D. (eds) Advances in Cryptology - CRYPT0’ 95. CRYPTO 1995. Lecture Notes in Computer Science, pp. 410-423. Springer, Berlin (1995)

  23. Liu, Y., Yang, C., Wang, Y., Zhu, L., Ji, W.: Cheating identifiable secret sharing scheme using symmetric bivariate polynomial. Inf. Sci. 453, 21–29 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Annals of Phys. 191(2), 363–381 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  25. Ivonovic, I.D.: Geometrical description of quantal state determination. J. Phys. A: Math. Gen. 14, 3241–3245 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. Chen, F.L., Liu, W.F., Chen, S.G., et al.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 10 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  27. Song, X., Liu, Y., Xiao, M., Deng, H.: A verifiable \((t, n)\) Threshold quantum state sharing against denial attack. IEEE Access. 7, 98908–98920 (2019)

    Article  Google Scholar 

  28. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  29. Gisin, N., Stiller, B., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006)

    Article  ADS  Google Scholar 

  30. Jain, N., Stiller, B., Khan, I., et al.: Risk analysis of Trojan-horse attacks on practical quantum key distribution systems. IEEE J. Sel. Topics Quantum Electron. 21(3), 6600710 (2015)

    Article  Google Scholar 

  31. Jain, N., Anisimova, E., Khan, I., et al.: Trojan-horse attacks threaten the security of practical quantum cryptography. New J. of Phys. 16(12), 123030 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  32. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  33. Yang, X.Q., Wei, J., Ma, H.Q., et al.: Trojan horse attacks on counterfactual quantum key distribution. Phys. Lett. A 380, 1589–1592 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  34. Sajeed, S., Minshull, C., Jain, N., et al.: Publisher Correction: Invisible Trojan-horse attack. Scientific Reports, p.8430 (2017)

  35. Vinay, S.E., Kok, P.: Extended analysis of the Trojan-horse attack in quantum key distribution. Phys. Rev. A 97, 042335 (2018)

    Article  ADS  Google Scholar 

  36. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 440–450 (2005)

    Google Scholar 

  37. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers for valuable comments. This work is supported by the National Natural Science Foundation of China under Grant No.11671244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Li, Z., Liu, L. et al. Cheating identifiable (kn) threshold quantum secret sharing scheme. Quantum Inf Process 21, 8 (2022). https://doi.org/10.1007/s11128-021-03343-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03343-2

Keywords

Navigation