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We report the experimental nondemolition measurement of coherence, predictability and concur-
rence on a system of two qubits. The quantum circuits proposed by De Melo et al. [1] are imple-
mented on IBM Q (superconducting circuit) and IonQ (trapped ion) quantum computers. Three
criteria are used to compare the performance of the different machines on this task: measurement
accuracy, nondemolition of the observable, and quantum state preparation. We find that the IonQ
quantum computer provides constant state fidelity through the nondemolition process, outperform-
ing IBM Q systems on which the fidelity consequently drops after the measurement. Our study
compares the current performance of these two technologies at different stages of the nondemolition
measurement of bipartite complementarity.

INTRODUCTION

Interest in quantum nondemolition (QND) measure-
ments dates back to the early ages of quantum theory [2].
In the 1930s, they were proposed to overcome the limita-
tions imposed by Heisenberg’s uncertainty principle, via
repeated measurements of a quantum state. In quan-
tum mechanics, the measurement process does produce
a perturbation (also called “back-action”) on the state of
the measured system. In general, back-action limits the
precision of a measurement by increasing the standard
deviation of the measured observable upon repeated mea-
surements. However, a QND measurement on a system
allows to measure an observable without back-action on
this observable, even if the state of the system itself is
affected by the measurement.

Three criteria are commonly used to assess the qual-
ity of a QND measurement [3, 4]. The first one is the
quantum state preparation criterion. An ideal QND mea-
surement of a given observable projects the conditional
quantum state on an eigenstate of this observable, and
thus can be purposed to state preparation. Second, the
measurement accuracy: the QND measurement should
give the expected outcome for a given input state. The
last one is the nondemolition criterion, which states that
the observable should not be disturbed by the measure-
ment. If the input state is an eigenstate of the measured
observable, its evolution through the QND measurement
should be given by the identity operator. It can be eval-
uated by recording the difference between measurement
outcomes on the observable before and after the QND
measurement. Most QND implementations are related
to an observable measured on a single-partite quantum
system, e.g. the spin readout of an electron [5] or the
position readout on a mechanical oscillator [6, 7].

Multipartite systems, on the other hand, can sustain
internal quantum correlations such as entanglement, and
their manipulation represents an essential resource for

quantum technologies. For the simplest nontrivial mul-
tipartite quantum system consisting of two qubits, la-
beled A and B, Jakob and Bergou have shown that a
complementarity relation holds between bipartite (non-
local) and single-partite (local) properties [8], which has
recently been checked experimentally on a truly bipar-
tite system [9], with IBM Q. The Jakob-Bergou relation
contains three quantities: first, the concurrence C , an
entanglement measure that is genuinely bipartite [10].
Second, the coherence or visibility VA,VB of each qubit
and, third, their respective predictability PA,PB , which
are all single-partite, local properties defined for each
subsystem. The “triality” relation C + Vk + Pk = 1
(k = A,B) generalizes the wave-particle duality to bi-
partite systems, in the same manner as coherence and
predictability express the wave-particle duality of a sin-
gle qubit [1]. Moreover, the projective measurement of
one of these observables induces a maximal uncertainty
on the two other complementary observables.
These fundamental quantities that characterize qubit

states are the subject of active experimental research due
to their relevance for quantum computing, as they are at
the heart of the essential concepts of entanglement and
interference, see e.g. [11, 12]. If the recent availability of
circuit quantum computers opens an opportunity to test
predictions on physical qubits, the limits of these noisy,
intermediate scale machines are quickly reached. Various
methods aiming at the measurement of these quantities
exist, which have their own sensitivity to quantum de-
coherence. In [9], linear state tomography was used on
the qubits of IBM Q to minimize the circuit size and
length, hence the decoherence-induced noise. Circuits
implementing QND measurements of the same comple-
mentary quantities were proposed in 2007 by De Melo et
al. [1]. These circuits are restricted to quantum states
with real coefficients, which does not affect their rele-
vance for quantum information processing [13]. As for
all QND circuits the outgoing state can be used as a re-
source for further processing, since postselection via the
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measurement of an ancilla system ensures the projection
on an eigenstate of the measured observable. In partic-
ular, measurement of the concurrence can be used for
heralding pure Bell states, acting as a form of entan-
glement distillation. If efficient Bell state preparation is
more than a decade old [14], their generation on quantum
computers is an ongoing and relevant task [15]. We note
that similar circuits are used by surface codes for error
correction, where the QND outcome is used to detect er-
rors and actively correct the state encoding information
[16, 17], which is a key challenge to the improvement
of noisy intermediate-scale quantum (NISQ) computers.
Even though error rates of current quantum computers
such as IBMQ are still too high for successful implemen-
tation of error correction, the prospect of using QND
measurements in this task motivates a careful analysis of
their performance on existing platforms.

The goal of the present paper is to thoroughly test the
QND circuits of ref. [1] on two different platforms for the
first time. To this end we make use of the newest IonQ
trapped ion quantum computer [18] which feature qubits
with extended coherence times compared to IBM Q. We
shall compare the quality of the results on IonQ and
on four superconducting qubit platforms of IBM Q [19].
Both systems are NISQ computers, but rely on differ-
ent technologies, different connectivities and numbers of
qubits. For each implementation we assess the three cri-
teria of a good QND measurement, namely its efficiency
for quantum state preparation, its measurement fidelity
and its non-demolition character. Moreover, the actual
benefits of the circuit optimization algorithms offered on
IBM Q via Qiskit [20] are investigated, with outcomes
highlighting the fragility of the optimization routine in
the presence of slow circuit parameter fluctuations. Over-
all, we find that IonQ produces results closer to the ideal
quantum model, most likely due to its lower gate error
rate and optimized connectivity with respect to IBM Q.
Our study provides an assessment of distinct quantum
computing architectures based on the two technologies of
today’s most sophisticated quantum computers, namely
superconducting circuits and trapped ions, in the funda-
mentally relevant task of QND measurement of comple-
mentary two-qubit observables.

QND MEASUREMENT OF TWO-QUBIT
COMPLEMENTARITY

In this section we present our state preparation circuit,
which generates the input state to be injected in the QND
measurement circuits. A brief summary of De Melo’s
proposal [1] and its relevant operational properties is also
presented.

Input state generation

To generate the input state |χ〉, we use the three pa-
rameter circuit depicted in fig. 1. The resulting state is

B

A |0〉

|0〉

Ry(ϕ)

Ry(λ) Ry(θ)
|χ〉

Fig. 1: Quantum circuit generating the input state |χ〉.
ϕ, θ, λ are real parameters in [0; 2π]. Ry(ϕ) and Ry(λ) are
single qubit rotations around the y axis of the Bloch sphere,
while Ry(θ) is a rotation of qubit B around y, controlled by
the state of qubit A in the computational basis (z axis of the
Bloch sphere).

written in the Bell basis as

|χ〉 = α
∣∣Ψ−〉+ β

∣∣Ψ+〉+ γ
∣∣Φ−〉+ η

∣∣Φ+〉 (1)

where the Bell states are defined as |Ψ±〉 = 1√
2 (|10〉 ±

|01〉) and |Φ±〉 = 1√
2 (|11〉±|00〉) for consistency with [1].

The circuit of fig. 1 generates |χ〉 with real coefficients

α = 1√
2

(
cos λ2 cos θ2 sin ϕ2 − sin λ2

[
cos ϕ2 + sin ϕ2 sin θ2

])
,

(2)

β = 1√
2

(
cos λ2 cos θ2 sin ϕ2 + sin λ2

[
cos ϕ2 − sin ϕ2 sin θ2

])
,

(3)

γ = 1√
2

(
− cos ϕ2 cos λ2 + sin ϕ2 sin

(
θ

2 + λ

2

))
, (4)

η = 1√
2

(
cos ϕ2 cos λ2 + sin ϕ2 sin

(
θ

2 + λ

2

))
. (5)

One can check that the coefficients of the superposition
of Bell states (1) can all be continuously varied from 0
to 1 thanks to the parameters ϕ, θ, λ. The full range of
VA, VB , PA, PB and C can be investigated by varying
only the 2 parameters ϕ and θ [9]. In fact, only the local
quantities of the qubit B, namely VB and PB , depend
on λ, which is expected as λ defines a local operation
applied on qubit B. Finally, we note that any fixed value
of λ is compatible with the full range analysis, thus we
will set λ = 0 for the experiment.
Let ρ be the density matrix of a two-qubit (A and B)

state, and the reduced density matrices of subsystems
ρA = TrB(ρ), ρB = TrA(ρ). In this work, the definitions
of eqs. (6) to (8) are used: the visibility of each qubit is
defined by

Vk =
∑
i 6=j
|ρkij |, k = A,B (6)

and the predictability reads

Pk = |ρk22 − ρk11 |, k = A,B. (7)

Let Σ = σy⊗σy be the spin flip matrix and define R(ρ) =
ρΣρ∗Σ. The concurrence is given [10] by

C = max(0,
√
r1 −

√
r2 −

√
r3 −

√
r4) (8)

where r1 ≥ r2 ≥ r3 ≥ r4 are the eigenvalues of R(ρ).
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QND measurement circuits

In their paper, De Melo et al. [1] propose two quantum
circuits for QND measurements on |χ〉, which we will la-
bel circuits 1 and 2. Circuit 1, depicted in fig. 2, performs
a nondemolition measurement of concurrence C on the
two-qubit state |χ〉 via the measurement of a third, an-
cilla qubit. As both circuits can measure concurrence, C
is indexed to differentiate both cases: with circuit 1, it is
computed as

C1 = |p1 − p0| , (9)

where p0 and p1 are the the probabilities of outcome 0
and 1 respectively, while measuring the ancilla qubit in
the computational basis.

B

A

C

|χ〉

|ω〉

|ψ〉

|0〉

Rx(π2 )

Rx(π2 )

X X

Rx(−π2 )

Rx(−π2 )

Fig. 2: Circuit 1 for the nondemolition measurement of the
concurrence of the state |χ〉AB . Repeated measurements of
the ancilla state |ω〉C in the computational basis yield p0
and p1.

Circuit 2 is more versatile; it performs the nondemo-
lition measurement of the two-qubit (non-local) concur-
rence of |χ〉 as well as the one-qubit (local) coherence (i.e.
visibility) Vk and predictability Pk of qubits k = A,B.
It requires two ancillae qubits, labeled C and D (fig. 3).

B

A

C

D

|χ〉 |ψ〉

|ω〉
|0〉

|0〉

R~θ1

R~θ1

R~θ3

X

X

X

R~θ2

R~θ2

Ancilla initialization

Fig. 3: Circuit 2 for QND measurement of visibility,
predictability and concurrence of the state |χ〉AB . Here, two
ancillae qubits C and D are used and measured in the
computational basis after interacting with A and B through
C-NOT gates.

The choice of the quantity to be measured is done by
applying the adequate single qubit rotations defined by

R~θi = e−i~σ·
~θi , i = 1, 2, 3. (10)

where R~θ1,2
act in parallel on A and B and R~θ3

acts on C
before its entanglement with D. The measurement of the
coherence of each qubit (VA, VB) is performed by choos-
ing ~θ1 = −~θ2 = π

2 ŷ and ~θ3 = 0. One can measure the
predictability (PA and PB) by setting ~θ1 = ~θ2 = ~θ3 = 0.
Finally, for the concurrence C , the circuit is specified
by ~θ1 = −~θ2 = π

2 x̂, ~θ3 = π
2 ŷ. After setting the an-

gles {θ1,θ2,θ3} corresponding to one of these three mea-
surements (coherence, predictability or concurrence), the
ancillae qubits evolve into the final state |ω〉CD, the mea-
surements of which yield the probabilities pij of qubits C
andD outcoming in the |i〉C |j〉D state (i, j = 0, 1). From
these results one can compute the quantities of interest
for A,B via

VA = |p00 + p01 − p10 − p11| , (11)

VB = |p00 + p10 − p01 − p11| (12)

when ~θ1 = −~θ2 = π
2 ŷ, ~θ3 = 0, and

PA = |p00 + p01 − p10 − p11| , (13)

PB = |p00 + p10 − p01 − p11| (14)

when ~θ1 = ~θ2 = ~θ3 = 0. The concurrence (conditional on
~θ1 = −~θ2 = π

2 x̂, ~θ3 = π
2 ŷ) is given by

C2 = |pΨ+ − pΦ− | (15)

where pΨ+ = |〈Ψ+ |ω〉 |2 and similarly for pΦ− , with Ψ+

and Φ− the Bell states defined above.

Outgoing state

When measuring visibility, the 4-qubit state before the
measurement of the ancillae qubits is found to be

1√
2

[
(η − β) |−〉 |−〉 |00〉+ (α+ γ) |−〉 |+〉 |01〉+

(γ − α) |+〉 |−〉 |10〉+ (η + β) |+〉 |+〉 |11〉
]
.

(16)

Here we keep the conventions of [1], i.e. |±〉 =
1√
2 (|1〉 ± |0〉). When the circuit is set to measure pre-

dictability, the 4-qubit state reads

1√
2

[
(η − γ) |00〉 |00〉+ (β − α) |01〉 |01〉+

(α+ β) |10〉 |10〉+ (γ + η) |11〉 |11〉
] (17)

and for concurrence,(
α
∣∣Ψ−〉+ η

∣∣Φ+〉) ∣∣Ψ+〉+
(
γ
∣∣Φ−〉+ β

∣∣Ψ+〉) ∣∣Φ+〉 .
(18)
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We stress that equation (16) is not equivalent to eq. (14)
of ref. [1], which we slightly corrected (see appendix A).

Looking at eqs. (16) to (18) it is clear that when
measuring the ancillae in the computational basis, the
post-measurement state of the two-qubit system A,B
will maximize the value of the quantity which is mea-
sured on the input state; e.g. if the circuit measures the
concurrence of the input state, the outgoing state after
measuring the ancillae qubits will be maximally entan-
gled (C = 1) upon postselection of the ancillae outcomes
(quantum state preparation criterion). Moreover, in the
absence of decoherence, a consecutive measurement of
the same observable is expected to yield identical results,
satisfying the nondemolition criterion.

EXPERIMENTAL RESULTS

We now present the experimental results obtained with
the circuits introduced above, on different quantum com-
puting architectures. For each observable, the two-qubit
quantum state |χ〉 is generated with a fixed value of θ for
which the observable evolves as a periodic function of ϕ
which spans the range between its extremal values (0, 1).
One period of the evolution is investigated by uniformly
stepping the values ϕi with the increment ϕi+1−ϕi = π

32 .
The number of repetitions of the experiment (shots) for
each set of parameters is set to 5000 for the measurement
values to be converged.

We observed high fluctuations in the results of IBM
Q, strongly depending on which of the 4 different IBM
Q backends [21] (with different qubit coupling maps) was
used. The experiments were also performed with auto-

A B C D
A B C D

(a)

A B C D 5

(b)

Fig. 4: Coupling between qubits of the quantum processors.
(a) shows the ions which encode qubits in IonQ, arranged in
line (details can be found in [22]). A global laser beam
(horizontally spread spot) combined with pulses localized on
each atom (arrows) enable two-qubit gates between any
qubits of the chain. (b) shows the coupling map of
ibmq_rome, which qubits are connected to their nearest
neighbors via superconducting transmission lines.

matic “optimization” of the quantum circuit for the given
backend [23]. Among our results on IBM Q, we found
that the best overall performance was reached by the

backend “ibmq_rome”, with which, in addition, the opti-
mization of the circuit generally enhanced the quality of
the results. The corresponding data is therefore used to
compare IBMQ with IonQ, in the following plots. The
backend ibmq_rome holds 5 qubits and is one of the IBM
Q machines in which each qubit is connected to its two
nearest neighbors (fig. 4).

Measurement accuracy and nondemolition criterion

The root of the mean squared (RMS) error of the mea-
surements {Oexp

i } of an observable O = V ,P,C is de-
fined as

E({Oexp
i }) =

√√√√ 1
N

N∑
i=1

(O(ϕi)− Oexp
i )2

, (19)

where N is the total number of states spanned by the
parameters ϕi, and {O(ϕi)} are the corresponding theo-
retically expected values of the observable.
First, the overall measurement accuracy of a particu-

lar implementation (QNDmeasurement of one observable
over one period) is estimated from the outcomes [21] of
the QND measurements {OQND

i } by computing the er-
ror E({OQND

i }). This accuracy thus also depends on the
quality of the input state preparation of |χ〉. In parallel
to the QND measurements, we performed tomographic
measurements (see appendix B) directly on the input
state |χ〉 after the preparation circuit. These alterna-
tive measurements of the observable {Oρχ

i }, performed
for comparison, require less gates than the QND scheme
and for this reason, are expected to be more accurate.
Second, the nondemolition criterion is verified in an

equivalent way, via measurements of the same observable,
{Oρψ

i }, on the output state |ψ〉, via tomography, after the
QND measurement.
The measurements of concurrence corresponding to

these two steps are reported on fig. 5. In these plots,
as well as in figs. 11 to 14 for other observables, results
of measurements performed on the input state |χ〉 with
ibmq_rome are plotted with red circles, while the ones
with IonQ are represented by blue squares. QND mea-
surements are reported with filled symbols, while empty
ones are used for tomographic measurements. Measure-
ments on the output state are plotted with cross marks
(× for ibmq_rome and + for IonQ). As the second cir-
cuit is deeper and requires more gates than the first one,
the observed drop of the QND-measured concurrence is
unsurprising, even though it is more pronounced with
ibmq_rome than with IonQ. Entanglement being sensi-
tive to interactions with the environment [24], we observe
a large deviation between QND measurement and theo-
retical value for highly entangled input states. A simple
scaling of the theoretical curve can be used to fit the
data; however this fitting method fails when applied to
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0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0     π/2   3π/4    π  π/4

ibmq_rome
QND

Output state tomography

IonQ
Input state

tomographyInput state

0     π/2   3π/4    π  π/4

�tted data analytical

2

1

Fig. 5: The concurrence of input state |χ〉 (with θ = π,
λ = 0) measured by the QND circuits 1 (top row) and 2
(bottom row) is shown with full symbols. Results from
ibmq_rome are shown on the right column, those from IonQ
on the left. The concurrence for qubits A,B computed from
their state tomography at the input and the output of the
circuit is shown as open and crossed symbols, respectively.
Color code is red for ibmq_rome and blue for IonQ. The
measurements are fitted with the theoretical curve
multiplied by a scaling factor. For the outgoing state |ψ〉,
the fits are theoretical states to which a fully mixed
component was added. Note that the tomographic
measurement of |χ〉 is independent of the QND circuit, and
the same data is reported on the top and bottom graphs
(empty squares and circles).

the output state tomography |ψ〉, because concurrence
is affected by the drop in state purity after the QND
circuit [25]. We therefore obtain a good fit to the data
by introducing a fully mixed component in the theoret-
ical state (dotted lines in fig. 5). Measurements for the
single-partite observables VA, VB , PA, PB are discussed
in appendix C and illustrated in figs. 11 to 14 .

The RMS error of all the QND measurements shown
in figs. 5 and 11 to 14, and their repetition on additional
backends, are gathered in table II. IonQ did perform
better than all IBM Q backends, except for the QND
measurement of VB and PB , for which ibmq_vigo was
the best. Comparing the performance of the QND mea-
surement and the tomographic measurement (table I in
appendix B), one can see that for ibmq_vigo, the QND
measurement does outperform the tomographic measure-
ment, which is not expected (the tomographic measure-
ment does not require any two-qubit gate) and thus prob-
ably reflects the fluctuation in the quality of the prepara-
tion of |χ〉. This is the reason why we prefer the analyt-
ical computation to the parallel tomographic measure-
ment when it comes to evaluating the accuracy of the

QND measurement, in addition to the readout errors.
The nondemolition of the observable is characterized

by the error of the tomographic measurement on the out-
put state with respect to the theoretical expected value
(table III, computed with the same procedure than ta-
ble II). Here again, IonQ outperforms most IBM Q back-
ends.
Finally, the mean value of all the measurement errors

obtained on the two systems (eq. (19) averaged over all
experiments and all observables) is shown with color bars
in fig. 6. We observe that the performance of IBM Q

ρχ QND(χ) ρψ

0.1

0.2

0.3

0.4

8.68 · 10−2 0.1 0.11

0.21
0.23

0.3

0.21

0.29

Av
er
ag

e
R
M
S
er
ro
r
E

IonQ IBM Q optimized circuit

r

m

y
v

r

m
yv

r

m

y

v r

m

y

v

r

m
y

v

Fig. 6: Averaged RMS error E over all experiments on IonQ
and IBM Q computers, for the three measurement steps.
Input state tomography ρχ: E({Oρχ

i }), QND measurement
of |χ〉: E({OQND

i }), and output state tomography ρψ:
E({Oρψ

i }). IBM Q backends are labeled r: ibmq_rome, v:
ibmq_vigo, y: ibmq_5_yorktown, m: ibmq_16_melbourne.

changes consequently from a backend to another (dis-
persion of the error in fig. 6). After averaging, as ex-
pected, the error of the tomographic measurement is
smaller than the one of the QND measurement, itself
smaller than error of the post-QND tomographic mea-
surement: E({Oρχ

i }) < E({OQND
i }) < E({Oρψ

i }). The
advantage of IonQ on IBM Q is particularly consequent
for the nondemolition criterion. Indeed, with IBM Q
the error is 34% higher on the output state measurement
than the QND, whereas with IonQ this ratio equals 4%.
Our averaged data also shows a relatively small reduction
of the error by the optional optimization of the circuit.

Quantum state preparation

In order to check the quantum state preparation crite-
rion, we perform an additional tomography of the state
|ψ〉 after the QND measurement, allowing to measure
the same observable as the QND circuit, on the condi-
tional output state (i.e. while postselecting results among
the outcomes of |ω〉, measuring the ancillae qubits in the
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computational basis). Calculations show that after the
measurement of a given quantity by the circuit, this very
same quantity will equal unity for the outgoing state. We
stress that there are values of the parameters (ϕ, θ) of the
preparation circuit (fig. 1) for which certain outcomes of
|ω〉 have low or vanishing probability. For example, mea-
suring the visibility, the setting (φ = π/2, θ = 0) implies
(η−β) = (α+γ) = 0, thus no possibility to postselect the
ancilla states |ω〉 = |00〉 and |ω〉 = |01〉. The probabil-
ity amplitudes of the quantum states of eqs. (16) to (18)
are represented as a function of ϕ in fig. 16 (appendix
C). Postselecting states with a low number of outcomes
causes poor density matrix estimation (low fidelity) and
the observables cannot be retrieved accurately. Our ex-
perimental procedure generates 5000 states per circuit,
and provides a sufficient number of outcomes to reach
a converged fidelity of postselected states, which stays
constant for a given range of ϕ, as visible in fig. 7. In
particular, we experimentally observe that a probability
amplitude above 0.5 (see fig. 16) is sufficient to measure
the conditional density matrix without degrading the fi-
delity F , a measure of distance between the experimental
density matrix ρexp and the theoretical expected one ρth,
defined as

F = Tr
(√√

ρthρexp
√
ρth

)2
. (20)

The quantum state preparation of maximally entangled
states |(ψ|ω=1)〉 = |Φ+〉 with the circuit of fig. 2 is re-
ported on fig. 7, showing the concurrence and the fidelity
of the postselected output states. Figure 8 shows the

1

1

0
0.4

0.5

0.6

0.7

0.8

0.9

, F

3π/4 ππ/2π/4

IonQ
1

F

ibmq_rome mean

Fig. 7: Concurrence and fidelity measured on the conditional
output state |(ψ|ω=1)〉 using the circuit of fig. 2. The
measured concurrence is 0.84± 0.08 on IonQ and 0.67± 0.21
on ibmq_rome. On IonQ F = 0.96± 0.02 while ibmq_rome
reaches F = 0.91± 0.05.

state preparation related to each observable for the cir-
cuit of fig. 3, for ibmq_rome [26] and IonQ. Among these
results, some states were postselected for outcomes of |ω〉
with a probability amplitude under 0.5: VA (near ϕ = 0

and ϕ = π) and VB (near ϕ = 0), see fig. 8. The con-
sequent degradation of the measurement is particularly
apparent on ibmq_rome.

0.7854 1.5708 2.3562

0.5

1

0.8

0.9

1

0.7854 1.5708 2.3562

0.8

1

0.9

0.95

1

01
10
01
10

10
11
10
11

00
00

2

k

  5π/4   π 3π/4    π/2   3π/2

0     π/2   3π/4    π  π/4

Fig. 8: Conditional measurements of C2, VA, VB , and PA,B

(|ω〉 = |00〉) on the output state for the circuit of fig. 3.
Mean values (horizontal lines) are reported in table V.

The mean value of each observable for the states dis-
played in figs. 7 and 8 are reported in table V, confirming
the better performance of IonQ with respect to IBM Q
for state preparation. Our measurements show that the
quality of the state preparation by IonQ was superior for
each experiment (highlighted in table V). Averaging over
each observable and each IBM Q backend, the values of
the measured observables on conditional states |(ψ|ω)〉
are 0.914 for IonQ and 0.679 (0.691) for IBM Q (with
circuit optimization).

Fidelity measurements

We computed the state fidelity (20) of |χ〉, |ψ〉 and
|(ψ|ω)〉 (see tables VI to VIII in appendix E). In general,
the state fidelity drops with postselection on IBM Q, and
stays constant on IonQ: fig. 9. Here again, we observe
changing fidelity with the IBM Q backends, and also that
the circuit optimization does improve the result for some
backends, whereas for others it leaves it unchanged.
We noticed that, for maximally entangled states, for

which high fidelity of preparation is challenging, the fi-
delity is actually increased by postselection. We repeated
the experiment 50 times for the input state |χ〉 = |Φ+〉,
and measured concurrence and fidelity in the output,
with and without postselection. The result, for the cir-
cuits of figs. 2 and 3, is shown in figs. 10 and 18 (see
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Fig. 9: Averaged fidelity of all states measured via
tomography on IonQ and IBM Q, for the input states |χ〉,
output states |ψ〉 and postselected output states |(ψ|ω)〉.
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Fig. 10: Fidelity as a function of concurrence measured on
the output state, using the circuit of fig. 2. 50 repetitions
using the input state |χ〉 =

∣∣Φ+〉.
appendix E). Note that here again the difference is par-
ticularly visible for IBM Q, while quite constant on IonQ.

CONCLUSION

We reported a first implementation of the scheme pro-
posed by De Melo et al. [1] designed for the QND mea-
surement of complementary observables on a bipartite
quantum system, using online available quantum com-
puters. We employed processors based on two differ-
ent technologies, namely superconducting qubits on four
machines proposed by IBM Q, and trapped-ion qubits
on IonQ. In the context of this experiment, we found
that trapped-ion qubits produced measurement outcomes
closest to those expected from an ideal circuit, which cor-
roborates past studies [22, 27]. Outcomes from IBM Q
circuits showed in general less reproducibility over time.
We observed important variations in the the results ob-

tained on IBM Q depending on the backend, the choice of
which also turned out to greatly influence the efficiency
of the circuit optimization routine. However, numerous
other aspects reflecting the quality of a quantum com-
puter for different tasks were not addressed in our study.
Looking ahead, scalability remains a challenge for both

platforms. The computation time is in general much
longer for trapped-ion based quantum bits, which how-
ever feature a much longer coherence time with respect to
superconducting ones – but progress on the speed of en-
tangling operations on ion qubits was recently reported,
see e.g. [28]. Another key difference between these two
technologies is the connectivity between qubits. While
superconducting chips require a physical transmission
line to connect two qubits, trapped ions can realize a
fully connected set of qubits, which drastically eases the
mapping of a quantum circuit to physical qubits, with
specific methods to this end (see e.g. [29]). For instance,
while experimenting on ibmq_rome, using circuit 2 and
measuring concurrence, the actual transpiled circuit con-
tained 6 C-NOT gates. This mapping is a central task
when using NISQ computers, because of the lack of effi-
cient error correction. If the full connectivity of the IonQ
computer probably enhances the fidelity of our measure-
ments, it would have a greater impact when generalizing
this experiment to a larger number of qubits, as in recent
works [30, 31]. Finally, we note that future studies will
be eased by the recently announced possibility to access
IonQ via Qiskit [32].
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Appendix A: Check for (16)

Let ρi be the 4-qubit state after state preparation by
the circuit of fig. 1,

ρi = |χ〉〈χ| ⊗ |0〉〈0| , (21)

the two-qubit identity operator 1 =
(

1 0
0 1

)
, and the ro-

tation along ŷ,

R =
(

cos π4 − sin π
4

sin π
4 cos π4

)
. (22)

The three-qubit C-NOT gate with first qubit as control
and last one as target is written in the usual computa-
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https://ionq.com
https://quantum-computing.ibm.com
https://ionq.com/news
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tional basis as

CNOT1→3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (23)

The evolution of ρi through the QND circuit of fig. 3 is
described by the operator

UV = (R−1 ⊗R−1 ⊗ 1⊗ 1)(1⊗ CNOT1→3)
(CNOT1→3 ⊗ 1)(R ⊗ R ⊗ 1⊗ 1).

It is easy to check that UV ρiU†V is the state (16).

Appendix B: Quantum state tomography

Quantum state tomography is a procedure by which
one can infer the density matrix, and requires a com-
plete set of measurements (as many as the number of real
parameters in the density matrix). The density matrix
holds all the information needed to compute the expec-
tation values of any system observable. In particular,
concurrence, coherence and predictability in a two qubit
system can be computed from its density matrix, directly
using eqs. (6) to (8).

On IBM Q machines, a built-in method for
quantum state tomography is used: the function
“state_tomography_circuits” sets up the circuits needed
for two-qubit state tomography, and “StateTomography-
Fitter” does compute the density matrix using maximum
likelyhood methods. This technique allows to increase
the speed of tomographic measurements, by reducing the
number of required circuits. On the IonQ quantum pro-
cessor, we implement the linear tomography method pre-
sented in [33] which consists in the execution of 16 cir-
cuits per tomography step. Those two methods, albeit
different, are both valid to measure the density matrix
of the system. Table I reports the errors of the tomo-
graphic measurements (with respect to the theoretically
expected value) performed on the state |χ〉. These to-
mographic measurements of the input states are used as
reference measurements to which one can compare the
QND method. The values reported in table I show that
the quality of the state preparation is not constant: the
tomographic measurement is expected to be slightly more
efficient than the QND measurement (see appendix C,
table II), in particular because tomography requires less
entangling gates. However, significantly higher errors are
sometimes observed for the initial tomographic measure-
ment. Up to some point, this could also be due to noise in
the measurement process, but in some cases most prob-
ably to poor state preparation.

VA VB PA PB C
IonQ 0.017 0.126 0.054 0.062 0.175

ibmq_rome 0.04 0.076 0.072 0.082 0.144
ibmq_vigo 0.043 0.263 0.507 0.123 0.676

ibmq_5_yorktown 0.147 0.192 0.391 0.234 0.496
ibmq_16_melbourne 0.043 0.105 0.182 0.134 0.247

Tab. I: Root of mean squared error of the tomographic
measurements on the input state, with respect to the
expected values, E({Oρχ

i }). Best performance highlighted
for each quantity.

Appendix C: QND and output state measurements

The figures of this section report the QND and to-
mographic measurements of visibility and predictability.
The data is plotted as in fig. 5: blue squares for IonQ,
red circles for IBM Q, which are filled (QND) and empty
(tomography). Crosses are used for the output state.
In opposition to concurrence, as piloting VA requires

only the local rotation defined by the angle ϕ, the state
preparation is more efficient than for entangled states
(fig. 11). In fact, one can see that the QND measure-
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1

0 3π/4 ππ/2π/4

Fig. 11: Visibility VA of input state |χ〉 (θ = 0) measured by
the QND circuit (filled symbols) and the state tomography
(empty symbols), using ibmq_rome (red) and IonQ (blue)
quantum bits, and measurements of VA on the output state
|ψ〉 (crosses). The symbols follow the convention of fig. 5.

ment gives an excellent measurement of VA on IonQ. The
measurement on the output state is also very close to
the expected value, for the full range of analyzed states.
While the state preparation on IBM Q is satisfying (input
state tomography, empty red circles on fig. 11), a signif-
icant gap to the expected result appears for the QND
measurement and the output state characterization on
ibmq_rome. Varying the visibility of the qubit B with
the state preparation circuit of fig. 1 requires a nonzero
value of θ, a more costly operation than when studying
VA. The measurements of VB (fig. 12) seem more noisy
for IonQ than IBM Q, and it cannot be determined visu-
ally which machine gives the most accurate result. How-



10

ever the peak value of VB at ϕ = π
32 , IonQ seems to

perform better.

0
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0 2π/3 2πππ/2

Fig. 12: Visibility VB of input state |χ〉 (θ = 3π
2 ) measured

by the QND circuit (fig. 3) and the state tomography, using
ibmq_rome and IonQ quantum bits, and measurements of
VB on the output state |ψ〉 (crosses). The symbols follow the
convention of fig. 5.

Coming to predictability, we measure PA and PB on
the same quantum states (i.e. the same values of ϕ, θ).
This enables to compare values (PA and PB) truly mea-
sured at the same time on the same quantum system.
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5π/4π3π/4π/2 3π/2

Fig. 13: Predictability PA of input state |χ〉 (θ = π)
measured by the QND circuit (filled symbols) and the state
tomography (empty symbols), using ibmq_rome (red) and
IonQ (blue) quantum bits, and measurements of PA on the
output state |ψ〉 (crosses). The symbols follow the
convention of fig. 5.

On IBM Q (red data in figs. 13 and 14), an asymmetric
behavior is observed: the measured predictability of the
qubit B is more distant from the expected value than the
one of qubit A. One can clearly see a higher deviation in
the QND and final tomography measurements of PB on
IBM Q for qubit B. This is the case around ϕ = π, where
|χ〉 = |11〉. The excited state of the second qubit (B) is
prepared through the C-NOT gate, a process which may
be responsible for the degradation of the state of qubit
B with respect to qubit A.
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Fig. 14: Predictability PB of input state |χ〉 (θ = π)
measured by the QND circuit (filled symbols) and the state
tomography (empty symbols), using ibmq_rome (red) and
IonQ (blue) quantum bits, and measurements of PB on the
output state |ψ〉 (crosses). The symbols follow the
convention of fig. 5.

The mean error between the measurements and the
theoretically expected values are reported for each ma-
chine and for each observable in table II (QND measure-
ments) and table III (output state tomographic measure-
ments).

VA VB PA PB C1 C2
IonQ 0.039 0.102 0.085 0.096 0.107 0.18

ibmq_rome 0.169 0.12 0.11 0.141 0.175 0.218
with optimization 0.177 0.096 0.092 0.139 0.23 0.278

ibmq_vigo 0.171 0.141 0.124 0.455 0.215 0.517
with optimization 0.261 0.063 0.33 0.068 0.129 0.569
ibmq_5_yorktown 0.107 0.340 0.189 0.242 0.119 0.556
with optimization 0.139 0.088 0.155 0.105 0.148 0.279

ibmq_16_melbourne 0.15 0.117 0.242 0.2 0.274 0.423
with optimization 0.147 0.336 0.151 0.237 0.293 0.572

Tab. II: Root of mean squared error of the QND
measurements on the input state E({OQND

i }). The best
measurement accuracy is highlighted for each quantity.

VA VB PA PB C1 C2
IonQ 0.015 0.106 0.076 0.078 0.096 0.26

ibmq_rome 0.059 0.229 0.223 0.237 0.327 0.335
with optimization 0.119 0.126 0.125 0.208 0.398 0.398

ibmq_vigo 0.225 0.098 0.229 0.147 0.317 0.687
with optimization 0.161 0.093 0.231 0.149 0.285 0.63
ibmq_5_yorktown 0.399 0.222 0.224 0.202 0.533 0.6
with optimization 0.346 0.219 0.254 0.168 0.531 0.595

ibmq_16_melbourne 0.029 0.138 0.211 0.182 0.651 0.696
with optimization 0.028 0.171 0.208 0.178 0.687 0.696

Tab. III: Root of mean squared error of the tomographic
measurement on the output state E({Oρψ

i }). The most
efficient nondemolition of the observable is highlighted for
each quantity.
In table IV and fig. 15 we show the error between the

value of the observable measured via QND, and the one
obtained by the following destructive tomography. We
expect the decoherence happening between the two mea-
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surements to increase the error from the QND to the
tomography, i.e. positive values in table IV and fig. 15.

VA VB PA PB C1 C2
IonQ -0.024 0.004 -0.009 -0.018 -0.011 0.08

ibmq_rome -0.11 0.109 0.113 0.096 0.152 0.117
with optimization -0.058 0.03 0.033 0.069 0.162 0.12

ibmq_vigo 0.054 -0.043 0.105 -0.308 0.102 0.17
with optimization -0.1 0.03 -0.099 0.081 0.156 0.061
ibmq_5_yorktown 0.292 -0.118 0.035 -0.04 0.414 0.044
with optimization 0.207 0.131 0.099 0.063 0.383 0.316

ibmq_16_melbourne -0.121 0.021 -0.031 -0.018 0.377 0.273
with optimization -0.119 -0.165 0.057 -0.059 0.394 0.124

Tab. IV: Mean error between the QND measurement and
the subsequent tomographic estimation,
E({Oρψ

i })− E({OQND
i }). A negative value indicates that

result of the second one was closer to the theoretically
expected value.

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5 IonQ

ibmq_rome optimized
ibmq_vigo optimized
ibmq_5_yorktown optimized
ibmq_16_melbourne optimized

21
-0.4

Fig. 15: Mean error between the QND measurement and the
subsequent tomographic estimation,
E({Oρψ

i })− E({OQND
i }). Dashed lines are traced between

results of IonQ, which most of the time provide the smallest
error, and ibmq_rome, the best performing IBM Q backend.

Negative values appear when the measurement noise is
high compared to the degradation of the state between
the two measurement steps. Note that the case of C2 (fol-
lowed by C1) is the measurement for which the state is
most likely to experience decoherence, and in that case we
observe an actual degradation from the QND to the to-
mographic measurement for every machine: fig. 15. One
can see that using IonQ, the two measurements are rel-
atively close (black dashed line on fig. 15). Indeed, as
showed in fig. 6, the quantum state is robust to decoher-
ence between the two measurements on IonQ. On IBM Q,
we observed considerably higher degradation of the state
between the two steps, but also some unexpectedly high
measurement errors. The backend ibmq_rome seems not
to be subject to these errors, thus we can observe the
effective degradation of the state between the measure-
ments (blue dashed line in fig. 15). Finally, we may re-
mark that the optimization of the quantum circuits on
IBM Q does not result in any notable improvement in
most cases.

Appendix D: quantum state preparation criterion
Figure 16 shows the probability amplitudes of the

quantum states of eqs. (16) to (18). The states with
sufficiently high probability amplitude (see figs. 7 and 8)
are postselected before measurement of the observables,
i.e. using the QND measurement as a state preparation
circuit. The average value measured on those states is
reported in table V for each observable.
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0.75
1
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(a)
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(b)
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    π

(d)

Fig. 16: Probability amplitudes of the output states of
eqs. (16) to (18) for the measurement settings of (a) C with
θ = π (b) Vk with θ = 0 (c) Vk with θ = 3π/2 and (d) Pk

with θ = π.
VA VB PA PB C1 C2

IonQ 0.98 0.975 0.964 0.977 0.844 0.746
ibmq_rome 0.899 0.903 0.726 0.728 0.666 0.656

with optimization 0.812 0.925 0.91 0.93 0.54 0.577
ibmq_vigo 0.926 0.753 0.886 0.83 0.674 0.047

with optimization 0.933 0.783 0.925 0.885 0.709 0.17
ibmq_5_yorktown 0.388 0.668 0.837 0.84 0.419 0.258
with optimization 0.494 0.626 0.734 0.833 0.422 0.246

ibmq_16_melbourne 0.96 0.828 0.866 0.869 0.181 0.475
with optimization 0.966 0.786 0.849 0.87 0.142 0.504

Tab. V: Mean value of the measured observable on the
conditional states |ψ〉, postselected as in figs. 7 and 8. The
best state preparation is highlighted for each quantity.
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Appendix E: Fidelity measurements

We computed the mean fidelity (20) of all relevant
states |χ〉 (|ψ〉) for each observable, and reported it in
table VI (table VII). The fidelity of the postselected

VA VB PA,B C
IonQ 0.996 0.958 0.966 0.962

ibmq_rome 0.984 0.956 0.956 0.959
ibmq_vigo 0.98 0.754 0.765 0.741

ibmq_5_yorktown 0.914 0.845 0.803 0.826
ibmq_16_melbourne 0.979 0.927 0.905 0.926

Tab. VI: Mean fidelity of the states |χ〉 generated for the
measurement of each observable.

VA VB PA,B C1 C2
IonQ 0.998 0.99 0.972 0.987 0.935

ibmq_rome 0.998 0.969 0.77 0.914 0.905
with optimization 0.993 0.98 0.907 0.886 0.891

ibmq_vigo 0.979 0.98 0.91 0.921 0.732
with optimization 0.987 0.976 0.917 0.912 0.781
ibmq_5_yorktown 0.899 0.953 0.902 0.857 0.857
with optimization 0.93 0.955 0.895 0.857 0.855

ibmq_16_melbourne 0.999 0.977 0.905 0.721 0.627
with optimization 0.998 0.975 0.906 0.689 0.623

Tab. VII: Mean fidelity of the states |ψ〉 after the QND
measurement.

states is given in table VIII. Fidelity tends to decrease
with the postselection (see fig. 9 which summarizes ta-
bles VI to VIII). To illustrate this fact, fig. 17 reports

VA VB PA,B C1 C2
IonQ 0.978 0.983 0.986 0.963 0.94

ibmq_rome 0.958 0.917 0.635 0.909 0.893
with optimization 0.946 0.946 0.96 0.868 0.885

ibmq_vigo 0.858 0.91 0.928 0.913 0.68
with optimization 0.904 0.916 0.954 0.914 0.747
ibmq_5_yorktown 0.771 0.86 0.921 0.828 0.807
with optimization 0.778 0.849 0.897 0.83 0.805

ibmq_16_melbourne 0.933 0.914 0.934 0.61 0.559
with optimization 0.937 0.904 0.93 0.64 0.546

Tab. VIII: Mean fidelity of the conditional states |ψ〉
postselected as in figs. 7 and 8 after the measurement of
each observable.

the repetition of the experiment for the measurement of
maximal VB state (θ = 3π

2 , ϕ = π). As observed in gen-
eral, the mean fidelity is slightly decreased by postselec-
tion on ibmq_rome, and close to unchanged on IonQ. In
the end, it is clear that postselection does perform effi-
cient state preparation, even healing the measured value
of an observable in the case of an incoming eigenstate.
Indeed, in the case of the measurement of concurrence
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Fig. 17: Fidelity as a function of VB measured on the output
state, using the circuit of fig. 3.

with the circuit of fig. 5 (C1), IonQ provides sufficient
state fidelity that postselection does not results in higher
concurrence, in opposition to ibmq_rome, on which post-
selection clearly purifies entanglement (fig. 10). In the
case of C2, for which the state is even more fragile and
affected by decoherence, postselection happens to be use-
ful on both systems (fig. 18), clearly increasing the state
fidelity together with the target value of the observable.

F

1  IonQ

0.5 0.6 0.7 0.8 0.9
0.86

0.88

0.9

0.92

0.94

0.96

01 , 
IonQ

ibmq_rome
no postselection

10  

01 , 10  
no postselection

2

Fig. 18: Fidelity as a function of concurrence measured on
the output state, using the circuit of fig. 3. 50 repetitions
using the input state |χ〉 =

∣∣Φ+〉.
We observed that the difference in the tomography pro-

cedure used on IBM Q and IonQ (see appendix B) is the
main contribution to the higher noise (thicker spreading
of the measurements along the line) for IonQ in the re-
sults of figs. 10, 17 and 18. In fact, in opposition with
IBM Q, the method we used on IonQ produces matrices
that are not necessarily positive semi-definite. They are
nevertheless valid estimations of the density matrix of
the considered two-qubit state, and the aforementioned
artifact does not hinder comparisons of the mean value
of observables and fidelity done in this study.
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