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Inspired by non-abelian vortex anyons in spinor Bose–Einstein condensates, we consider the quan-
tum double D(Q8) anyon model as a platform to carry out a particular instance of Shor’s factor-
ization algorithm. We provide the excitation spectrum, the fusion rules, and the braid group rep-
resentation for this model, and design a circuit architecture that facilitates the computation. All
necessary quantum gates, less one, can be compiled exactly for this hybrid topological quantum
computer, and to achieve universality the last operation can be implemented in a non-topological
fashion. To analyse the effect of decoherence on the computation, a noise model based on stochastic
unitary rotations is considered. The computational potential of this quantum double anyon model
is similar to that of the Majorana fermion based Ising anyon model, offering a complementary future
platform for topological quantum computation.

Introduction:— The quest for fault-tolerant quantum
computation is a substantial contemporary pursuit in
science and technology [1, 2]. It is the intrinsic paral-
lelism exhibited by quantum systems that is responsible
for their extraordinary computational potential, and con-
sequently, quantum systems could serve as an arena for
simulating algorithms of exponential complexity. From
an engineering point of view, the main hurdle in the con-
struction of quantum devices is the mitigation of envi-
ronmental noise that causes decoherence. The encoded
quantum information becomes distorted due to decoher-
ence, which is why error correcting protocols [3–5] are
imperative for successful rectification of such distortions.
However, error correcting schemes are generally very ex-
pensive to carry out. The idea of employing two dimen-
sional systems that are intrinsically robust, such as sys-
tems exhibiting topological phases of matter [6–8], has
led to a new paradigm in quantum computing known as
topological quantum computation (TQC) [7, 9–12].

Such topologically ordered systems may be inhab-
ited by special kinds of quasiparticles called non-abelian
anyons [13–15], which may pave the way towards the
realization of TQC. When non-abelian anyons are ex-
changed, their wave-function transforms according to
representations of the braid group. This is in contrast
to bosonic and fermionic wavefunctions, which trans-
form rather trivially under the action of the permutation
group. The anyonic quantum states are subject to topo-
logically protected unitary transformations when braid-
ing of their worldlines is performed. Such braiding of
anyons serves as a possible way to implement topologi-
cally protected quantum circuits.

Notable anyon models include the Fibonacci and Ising
anyons, which both belong to the family of SU(2)k mod-
els that are based on non-abelian Chern–Simons theory
[10, 16–19]. All SU(2)k models are universal except for
the cases k = 2 and k = 4, the former of which could
potentially be realised by Majorana fermion zero mode
quasiparticles [20].

Here we consider another class of anyon models known
as quantum doubles [7, 21–24]. Specifically, we are fo-
cusing on the quantum double of the quaternion group
D(Q8), inspired by its connection to the non-abelian vor-
tex anyons in spinor Bose–Einstein condensates [25–29].
In particular, the unbroken high-temperature phase of
an F = 2 spinor BEC may, through spontaneous sym-
metry breaking, collapse to the biaxial nematic phase
[26, 30] characterised by the binary dihedral-4 group D∗4 .
It is conceivable that this may further be broken down
to its D∗2 subgroup, which is isomorphic to the quater-
nion group Q8, considered here. The Q8 is a particu-
larly small subgroup representing little residual symme-
try, which should be beneficial for the prospect of its
experimental realizability. The Q8 based quantum dou-
ble model has previously been considered in [31] albeit
in a different context.

In the present work, we are turning our focus to appli-
cations within quantum double TQC. We derive explic-
itly all pertinent information, such as particle content,
fusion rules and braiding rules, for the non-abelian quan-
tum double model D(Q8). We also design qubit struc-
tures (fusion trees), which are exploiting the full compu-
tational power of the model to optimize its utility. As
a proof of principle demonstration, we then design and
compile a quantum circuit architecture which allows us
to factorize the number 15 into its prime number con-
stituents using Shor’s algorithm [32]. Experimental real-
izations of Shor’s algorithm using other platforms have
been studied in [33–41].

Quantum doubles based on discrete gauge groups
emerge through the Higg’s mechanism by breaking par-
ticular symmetries of the initial Yang–Mills–Higg’s La-
grangian [21]. Due to the resulting discrete structure,
braiding the anyons of the theory can only implement a
finite set of unitary transformations, implying that the
corresponding braid group is non-universal. To remedy
this, measurement based fusion protocols [42, 43] could
be implemented, allowing one to carry out phase gate
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rotations of arbitrary angle. However, universality can
only be achieved this way at the expense of sacrificing
some fault-tolerance.

In the specific quantum circuit considered here, only
one additional noisy gate is required, as all of the other
gates can be implemented exactly within the anyon
model by braiding alone. We employ a noise model based
on stochastic unitary rotations to study its effect on the
computational process. We also account for the error ac-
cumulation in the form of leakage from the computational
subspace to its complement [43].

Quantum double of the quaternions:— Consider a con-
densate with spinor degrees of freedom governed by the
(2+1)-dimensional non-abelian Yang–Mills–Higgs action

S =

∫
R2+1

d3x(F aµνF
µν
a + (Dµφ)†Dµφ− V (φ))

with SU(2) symmetry, where F aµν is the gauge curvature
tensor, φ is the Higgs field, D is the covariant derivative
and V is the potential. We envisage the system cool-
ing down and undergoing a symmetry breaking process
to a subgroup H ⊂ SU(2). Here we consider an or-
dered phase corresponding to H = Q8, which means that
the pertinent excitations are determined by the homo-
topy theory of D(Q8). The group Q8 has eight elements
and five conjugacy classes according to the partitioning
Q8 = {〈e〉, 〈ē〉, 〈i, ī〉, 〈j, j̄〉, 〈k, k̄〉}, where e is the identity
and the bar denotes conjugation. The quantum double of
a finite group is an algebraic construction that simulta-
neously involves the group and its Fourier dual [44]. The
particle content of the quantum double is consequently
defined by the irreducible representations of this algebra.
In particular, the possible species of one type of parti-
cle, referred to as fluxons, are categorised according to
the conjugacy classes of Q8. Moreover, a second par-
ticle type, known as chargeons, also exist in the excita-
tion spectrum, which inhabit the reciprocal space ofR2+1

and are defined by the irreducible representations of Q8.
Hence, the chargeons and fluxons are related by a gen-
eralised Fourier transform, which establishes a particle-
vortex duality in the model. These two particle types
can also coexist, thus forming composite objects known
as dyons, under the condition that the chargeon group
element commutes with the fluxon one, meaning that a
dyon, denoted by (C,Γ(ZC)), is specifically defined by
a conjugacy class C and an irreducible representation of
its centralizer Γ(ZC). The centralizers of each conjugacy
class of Q8 are listed in Table I.

The groupQ8 has four one-dimensional irreducible rep-
resentations comprising one trivial Λ0 and three non-
trivial ones Λa (a = 1, 2, 3), in addition to one two-
dimensional representation Λ4. The remaining centraliz-
ers have four one-dimensional irreducible representations
given by one trivial, Π0, and three non-trivial ones Πa

(a = 1, 2, 3), which are simply permutations of one an-
other. In total, D(Q8) has 22 particle species, comprising
four pure fluxons

1̄ = (ē,Λ0) and Φx = (Cx,Π0), (1)

where x = i, j, k, four pure chargeons

ρy = (e,Λy) and ∆ = (e,Λ4), (2)

where y = 1, 2, 3, and 14 composite dyons

Φ̃x = (Cx,Π2), ρ̄y = (ē,Λy), ∆̄4 = (ē,Λ4),

Σx = (Cx,Π1) and Σ̃x = (Cx,Π3). (3)

In addition to these particles, the pure vacuum sector is
denoted by 1 = (e,Λ0).

Fusion and braiding:— When two non-abelian anyons
are fused their joint tensor representation branches into
its irreducible orthogonal blocks, which correspond to the
possible particle outcomes of the fusion. The particle
types that emerge from the decomposition can be con-
veniently obtained using the so called Verlinde’s formula
[45]

NCαβ
ABγ =

∑
D,δ

SαδADS
βδ
BDS

γδ
CD

S0δ
eD

, (4)

where A,B,C, and D denote conjugacy classes and
α, β, γ, δ label the centralizer irreducible representations.
The explicit form of the modular S-matrix is provided in
Supplemental Material [46]. The complete set of fusion
rules are also listed in [46], and a subset of these

Φx ⊗ Σx = ∆⊕ ∆̄, Φx ⊗ Σy = Φz ⊕ Φ̃z, (5)

Φx ⊗ Φx = 1⊕ 1̄⊕ ρx ⊕ ρ̄x, Φx ⊗ Φy = Φz ⊕ Φ̃z,

Σx ⊗ Σx = 1⊕ ρx ⊕ ρ̄y ⊕ ρ̄z, Σx ⊗ Σy = Σz ⊕ Σ̃z,

are required for defining our qubit Hilbert spaces.
Computational universality:— Several different anyon

systems would qualify as a qubit architecture. For the
purpose of demonstrating Shor’s algorithm it would make
sense to design our TQC model such that its computa-
tional power is maximized. Since the specific proof of
concept objective is to factor the number 15, it is tempt-
ing to base our Hilbert space on either Φx anyons or Σx
anyons as both of these have four fusion outcomes, which
means that only two such qudits would be required to
represent the numbers from 1 to 16. However, by an-
alyzing the topology of the resulting Hilbert space we
find that universality of the model will become a major
consideration.

TABLE I. Conjugacy classes C of Q8 and their corresponding
centralizers Z(C).

Conjugacy classes Centralizers

Ce = 〈e〉 Z(Ce) = Q8

Cē = 〈ē〉 Z(Cē) = Q8

Ci = 〈i, ī〉 Z(Ci) = Z4 = {e, ē, i, ī}
Cj = 〈j, j̄〉 Z(Cj) = Z4 = {e, ē, j, j̄}
Ck = 〈k, k̄〉 Z(Ck) = Z4 = {e, ē, k, k̄}
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Hopf-fibrations:— A four-level system transforms un-
der SU(4) and since this group is acting on a space with
a total of 2 · 4 = 8 dimensions, the spherical surface that
is being rotated is 8 − 1 = 7 dimensional, that is, a 7-
sphere S7. Further, it follows from Adam’s theorem [47]
that topological spheres of dimension 0, 1, 3, and 7 have
the local structure of a fiber bundle, thus allowing us to
decompose the manifold into its base space and a fiber
such that f : Sd −→ Sn × Sm, where d = n + m. Such
a map f is known as a Hopf fibration [48, 49] and when
applied to the four-level system, it locally maps the man-
ifold f : S7 −→ S4 × S3, where S4 is the base space
and S3 is the fiber. We can apply this map iteratively,
which allows us to further decompose S3 according to
f : S3 −→ S2 × S1, that is a regular 2-sphere and a cir-
cle, from which we can conclude that S7 ' S4×S2×S1,
locally.

Since we consider these maps in the context of a quan-
tum mechanical system, the S1 degree of freedom per-
tains to the U(1) gauge freedom, which is an experimen-
tally unmeasurable symmetry of the amplitude. We may
thus consider the projective Hilbert space, meaning that
the effective topology of the manifold is S4 × S2. Since
computational universality entails that we must be able
to generate a topologically dense cover over the mani-
fold, we conclude that achieving this is much harder for
a 4-level qudit than a 2-level qubit. Specifically, since
qubits transform according to SU(2), which rotates a
2 ·2−1 = 3 dimensional sphere S3, the effective topology
is S2 (the Bloch sphere) due to its local gauge fiber struc-
ture. Moreover, if we define a stereographic projection
of S2 onto R2 through the map s : S2 −→ R2 ∪ ∞, we
may conclude that in order to cover S2 densely, we need
to find a two-dimensional basis and make sure that we
have elements of infinite order in the braid group. For a
non-universal three-stranded braid group B3, this can be
achieved by supplementing the generator set with an irra-
tional phase gate [17]. Note that for a two qubit system,
which also has four levels, we have 6 anyons and thus a
six-stranded braid group B6, which has five generators,
whereas a single 4-level qudit still only transforms under
B3 with two generators. Consequently, it is much harder
to span the complicated 4-level sphere in the qudit case
due to the fewer number of generators and as a result, a
less powerful braid group.

Circuit architecture:— We have arrived at the conclu-
sion that basing our quantum circuit on anyons of the
same species probably would make it difficult to imple-
ment the logic gates required in Shor’s algorithm, since
such systems have four levels. Moreover, calculating the
braid group generators shows that the resulting group is
either trivial or close to trivial. This leads to a conjecture
that diversifying the qubit architecture might be a good
approach for maximizing the computational power of the
anyon model. Specifically, basing the individual qubits
on either Σx or Φy type anyons (where x, y = 1, 2, 3), or a
mixture of the two, yields a particularly strong model as
the resulting braid group order is maximized and simul-

(a)

(b)

Σx Σy Σz

Φx Φy Φz

Σz ⊕ Σ̃z

Φz ⊕ Φ̃z

Δ

Δ

Σx Σy Σz Φx Φy Φz

Φz ⊕ Φ̃zΔ ⊕ Δ̄
Σx ⊕ Σ̃xΦz

1

(c)

FIG. 1. (a) Qubit based on Σ anyons. (b) Qubit based on
Φ anyons. (c) Two qubit anyon system based on Σ and Φ
anyons.

taneously the number of non-computational basis states
will be minimized, reducing the expected leakage into
these states.

ΣΦ anyon computer:— To implement the circuit
illustrated in Fig. S1 [46], four qubits are required.
This can be achieved by defining three of the qubits
as in Fig. 1 (a) and the last one as in Fig. 1 (b),
where the controlled operations are implemented be-
tween qubits of the former kind with those of the
latter. Any two qubit interaction in the circuit will
thus be of the form presented in Fig. 1 (c) where all
anyons are distinguishable. Note that all vertices are
independent meaning that the total two qubit Hilbert
space is 23 · 1 = 8 dimensional, which implies that
we have four non-computational states in addition
to the four computational ones defined by Hcomp =

span{|Φz,∆,Σx〉 , |Φ̃z,∆,Σx〉 , |Φz,∆, Σ̃x〉 , |Φ̃z,∆, Σ̃x〉}.
The single qubit braid matrices σ1 and σ2 are

σ
(ΦxΦy)
1 =

(
−1 0

0 ei
π
2

)
, σ

(ΦxΦy)
2 =

1√
2

(
ei

3π
4 ei

5π
4

ei
5π
4 ei

3π
4

)
σ

(ΣxΣy)
1 =

(
e−i

π
4 0

0 e−i
3π
4

)
, σ

(ΣxΣy)
2 =

1√
2

(
−1 1

1 −eiπ2

)
σ

(ΣxΦy)
1 =

(
−e−iπ4 0

0 ei
π
4

)
, σ

(ΣxΦy)
2 =

1√
2

(
1 −1

−1 ei
π
2

)
,

which can be derived with the aid of the Supplemen-
tal Material [46]. The two qubit braids [46] can be ob-
tained by means of graphical calculus given the infor-
mation contained in the single qubit ones [10]. We pro-
ceed by making a few pertinent remarks. For a given
i the braid matrices σi are equivalent up to a global
phase factor, which implies that they have the same ef-
fective projective action. Remarkably, they also map
projectively onto the Ising anyon braid matrices given
by SU(2)2 Chern–Simons theory. However, it is well
known that the Ising anyon braids implement the Clif-
ford group exactly, which is spanned by the Pauli matri-
ces that form a representation of the quaternions. The
8 × 8 two qubit braid matrices in the six anyon en-
coding scheme are provided explicitly in [46], and sim-
ilarly one can prove that these map projectively onto
the two qubit Ising anyon braid matrices, but in the
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eight anyon encoding scheme. Interestingly, many of the
standard logic gates can be implemented exactly within
this model, despite it being non-universal. For instance
the Hadamard H and CNOT gates are H = σ2σ1σ2,
and CNOT = Pσ−1

3 σ−1
4 σ−1

5 Pσ3σ4Pσ3σ1, where P is
a projection operator that can be regarded as a map
P : Hfull −→ Hcomp projecting the full two qubit Hilbert
space Hfull onto the computational subspace Hcomp, thus
containing all of the amplitude in Hcomp. We provide
the exact compiled forms of the S-gate, the Pauli-X, the
Pauli-Y , the Pauli-Z and the controlled-Pauli-Z in Sup-
plemental Material [46]. Note that the CNOT is four di-
mensional while the two qubit braid matrices are eight di-
mensional. This means that amplitude will leak into the
non-computational states when σ3 is applied since this
gate is the only one that couples the two subspaces. How-
ever, projection methods have been developed to man-
age the leakage, which, if successfully implemented, will
have the effect of only braiding within the computational
space. There also exist a subset of controlled two qubit
braids known as weaves, which naturally cause very little
leakage [50]. However, this weaving method is only use-
ful when one has a vacuum sector in the fusion product
and when the model is universal. Here we instead sug-
gest to perform a projective measurement P, after each
σ3 braid.

As noted, the Hadamard and the CNOT can be im-
plemented without any compilation error, given that the
leakage error correction is carried out for the CNOT, so
the only gate required for the purposes of our demonstra-
tion that cannot be implemented by means of braiding
alone is the controlled-π/2. To implement this gate we
suggest using similar scheme as developed in [42], where
a reservoir of ancillary qubits are used to set up product
states |Ψ〉 |Rϕ/2〉, where |Rϕ/2〉 is phase rotated by an
angle ϕ/2, from which the phase Rϕ/2 can be extracted.
However, such a measurement protocol is susceptible to
noise and therefore in the results presented in Fig. 2 we
have applied stochastic unitary rotations to simulate the
effect of conventional noise on the computation. The ro-
tational angles of arbitrary elements U ∈ U(4) are sam-
pled from a normal distribution N(0, ν) with zero mean
and variable standard deviation ν, which can be inter-
preted as the noise strength [17]. Assuming that this can
be successfully achieved with ϕ = π, all of the logical
operations required for the implementation of the Shor’s
algorithm quantum circuit are available.

Factorisation of 15:— The result of the simulation of
Shor’s algorithm corresponding to the instance N = 15
and a = 11, using our D(Q8) topological quantum com-
puter simulator is shown in Fig. 2. Four different levels
of noise corresponding to ν = 0, 0.1, 0.5, 1 are applied to
the controlled-π/2 gate, which could not be realized by

braiding alone. Figure 2 presents the probability distri-
bution of the final state, showing two peaks with 50%
amplitude each, representing the numbers 0 and 2, when
no noise is applied (red curve). The trivial number 0 is a
false solution but measuring 2 solves the problem as the

| Ψ
|2

0.3

0.2

0.1

0.0

Er
ro
r

Number

Am
pl
itu

de

Number

Number
0 1 2 3

FIG. 2. Prime number factorisation of 15 using Shor’s algo-
ritm. Amplitudes of the resulting superposition when four
different noise levels are applied. The inset represents the
statistical error corresponding to the first four data points,
0, 1, 2, 3, with non-zero amplitude.

period can be computed as r = 22

2 = 2, which yields the

prime factors gcd(a
r
2 ± 1, N) = gcd(11

2
2 ± 1, 15) = 3, 5,

where a = 11 is chosen. Furthermore, the peaks become
less distinct when the noise level is increased, eventually
destroying the computation as the amplitude becomes
too spread out. Each of the curves represent an average
over 1000 realizations.

Conclusions:— We have presented a model of a topo-
logical quantum computer based on the quantum double
of the quaternions D(Q8) inspired by its structural sim-
ilarity to the superfluid phase that supports fractional
vortices in spinor Bose–Einstein condensates as its flux-
ons [25]. All pertinent information of the quantum dou-
ble such as particle content, fusion rules and braiding
rules were derived and a qubit architecture was designed
to facilitate topological quantum computation. We per-
formed a technology demonstration of this anyon model
by carrying out prime number factorisation using Shor’s
algorithm. The recipe of the quantum double based TQC
is generic and can be applied to any laboratory superfluid
having a stable ground state symmetry characterised by
a discrete non-abelian gauge group, whose topological
excitations include non-abelian vortex anyons.
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Appendix A: Shor’s algorithm

Shor’s algorithm consists of two main parts, a quan-
tum step followed by a classical step. The algorithm
is initiated by setting up disentangled product state of
two registers |ψ〉 = |0〉⊗n ⊗ |0〉⊗n of n = 2 · dlog2(N)e
qubits, where the brackets denote the ceil function that
is rounding up the number to the closest integer and N is
the number being factorised. The factor two comes from
the fact that two registers are required, one in which the
integers 1, 2, .., N are encoded and one which serves as
a target when the controlled gates in the modular expo-
nentiation function (MEF) is applied. The first register
is then set up in an equal weight superposition by apply-
ing the Hadamard gate H to all of the n qubits in the
register which results in a state

|Ψ〉 = H⊗n⊗ I⊗n |ψ〉 =
1

2n/2

[
2n−1∑
m=0

|m〉

]
⊗|0〉⊗n . (A1)

Next, the quantum period finding subroutine is car-
ried out on the full register which finds the period of the
function f(x) = ax (mod N), where a is an integer in
the interval 1 < a < N . This part truly is at the heart
of Shor’s algorithm as such a problem is inherently ex-
ponential in nature and cannot be solved efficiently by
means of any classical analog. Quantum period finding
can be further decomposed into two parts. First, the
MEF is applied to the lower register resulting in

MEF : |ΨMEF 〉 =
1

2n/2

2n−1∑
x=0

|x〉 ⊗ |ax (mod N)〉 ,

(A2)
where after the lower register is measured, thus project-
ing the full Hilbert space onto a subspace spanned by the
states |x′〉 resulting in the same number ax (mod N).
The last step before the final measurement is to apply
the inverse quantum Fourier transform QFT† to the top
register

QFT† : |Ψ̃MEF〉 =
1

2n/2

2n−1∑
y=0

∑
x′

e−i2π
yx′
2n |x′〉 , (A3)

which has the effect of destructively interfering the false
solutions and constructively interfering the true solu-
tions, resulting in sharp amplitude peaks pertaining to
the states that solve the problem. One of these solution
candidates is measured in the very last step. Suppose
that a state |m〉 was measured. Then the rest of the
algorithm can be completed classically as we only have
to compute gcd(a

r
2 ± 1, N), where the period r can be

obtained from m = j 2n

r , where j is the smallest integer
such that the equation is satisfied. However, in this work
we are merely interested in a proof of concept demonstra-
tion of factorizing the number 15 and if we pick a = 11,
the circuit can be reduced so that only two qubits are
required in each register, instead of four. This is due to
the fact that the MEF will always return only two states
|1〉 and |11〉 for this particular instance of a. In Fig. 3 (a)
the circuit is represented in its higher level modular form
and in Fig. 3 (b) the different oracles are broken down
into the elementary gates.

Appendix B: Structure of the D(Q8) anyon model

Here we outline the structure of the D(Q8) anyon
model which is based on the quaternion group Q8.

1. Cayley table of the quaternion group Q8

Table II shows the Cayley table for the quaternion
group Q8. The colors correspond to the five conjugacy
classes of this group with eight group elements.
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FIG. 3. (a) Modular circuit for Shor’s algorithm for N = 15
and a = 11. (b) Same circuit as in (a) but with the subrou-
tines decomposed into elementary gate operations.

TABLE II. Cayley table of the quaternion group Q8.

× e ē i ī j j̄ k k̄

e e ē i ī j j̄ k k̄

ē ē e ī i j̄ j k̄ k

i i ī ē e k k̄ j̄ j

ī ī i e ē k̄ k j j̄

j j j̄ k̄ k ē e i ī

j̄ j̄ j k k̄ e ē ī i

k k k̄ j j̄ ī i ē e

k̄ k̄ k j̄ j i ī e ē

2. Fusion rules

The complete set of fusion rules [31] are presented be-
low for the sake of completeness.

Cargeons only:

ρx ⊗ ρx = 1, ρx ⊗ ρy = ρz (B1)

ρx ⊗∆ = ∆, ∆⊗∆ = 1⊕ ρx ⊕ ρy ⊕ ρz

Fluxons only:

1̄⊗ 1̄ = 1, Φx ⊗ Φx = 1⊕ 1̄⊕ ρx ⊕ ρ̄x (B2)

Φx ⊗ Φy = Φz ⊕ Φ̃z, 1̄⊗ Φx = Φx

Dyons only:

Φ̃x ⊗ Φ̃x = 1⊕ 1̄⊕ ρx ⊕ ρ̄x, Φ̃x ⊗ ρ̄x = Φ̃x (B3)

Φ̃x ⊗ ρ̄y = Φx, ρ̄x ⊗ ∆̄ = ∆̄

∆̄⊗ Φ̃x = Σx ⊕ Σ̃x, ∆̄⊗ Σx = Φx ⊕ Φ̃x

Σx ⊗ Σx = 1⊕ ρx ⊕ ρ̄y ⊕ ρ̄z, Σ̄x ⊗ Σ̃x = 1̄⊕ ρ̄x ⊕ ρy ⊕ ρz
Σx ⊗ Σy = Φz ⊕ Φ̃z

Chargeons, fluxons and dyons:

ρx ⊗ Φx = Φx, ρx ⊗ Φy = Φ̃y (B4)

∆⊗ Φx = Σx ⊕ Σ̃x, Φ̃x ⊗ 1̄ = Φ̃x,

1̄⊗ Σx = Σ̃x, 1̄⊗ Σ̃x = Σx

ρx ⊗ Σx = Σx, ρy ⊗ Σx = Σ̃x

ρ̄x ⊗ Σx = Σ̃x, ∆⊗ Σx = Φx ⊕ Φ̃x

∆⊗ Σ̃x = Φx ⊕ Φ̃x, ∆⊗ 1̄ = ∆̄

Φx ⊗ Σx = ∆⊕ ∆̄, Φx ⊗ Σy = Φz ⊕ Φ̃z,

Φx ⊗ Φx = 1⊕ 1̄⊕ ρx ⊕ ρ̃x, Φx ⊗ Φy = Φz ⊕ Φ̃z,

Σx ⊗ Σx = 1⊕ ρx ⊕ ρ̄y ⊕ ρ̄z, Σx ⊗ Σy = Σz ⊕ Σ̃z

3. Two qubit braid matrices

The two qubit braid matrices presented here can be
computed with the aid of graphical calculus, given that
the single qubit braid matrices are known. For a thor-
ough discussion we refer the reader to [10].

σ2
1(X,Y ) =



a 0 0 0 0 0 0 0

0 a 0 0 0 0 0 0

0 0 b 0 0 0 0 0

0 0 0 b 0 0 0 0

0 0 0 0 a 0 0 0

0 0 0 0 0 a 0 0

0 0 0 0 0 0 b 0

0 0 0 0 0 0 0 b


(B5)

σ2
2(X,Y ) =

1√
2



c 0 d 0 0 0 0 0

0 c 0 d 0 0 0 0

d 0 c 0 0 0 0 0

0 d 0 c 0 0 0 0

0 0 0 0 c 0 d 0

0 0 0 0 0 c 0 d

0 0 0 0 d 0 c 0

0 0 0 0 0 d 0 c


(B6)
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TABLE III. Values of the variables a, b, c, d and e when braiding X and Y .

(X,Y ) Φx Σx

Φy a = −1, b = ei
π
2 , c = ei

3π
4 , d = ei

5π
4 , e = ei

3π
4 a = −e−iπ

4 , b = ei
π
4 , c = 1, d = −1, e = ei

π
2

Σy a = −e−iπ
4 , b = ei

π
4 , c = 1, d = −1, e = ei

π
2 a = e−iπ

4 , b = e−i 3π
4 , c = −1, d = 1, e = 1

σ2
3(X,Y ) =

1√
2



a 0 0 0 b 0 0 0

0 b 0 0 0 a 0 0

0 0 b 0 0 0 a 0

0 0 0 a 0 0 0 b

b 0 0 0 a 0 0 0

0 a 0 0 b 0 0 0

0 0 a 0 0 b 0 0

0 0 0 b 0 0 0 a


(B7)

σ2
4(X,Y ) =

1√
2



c d 0 0 0 0 0 0

d c 0 0 0 0 0 0

0 0 c d 0 0 0 0

0 0 d e 0 0 0 0

0 0 0 0 c d 0 0

0 0 0 0 d e 0 0

0 0 0 0 0 0 c d

0 0 0 0 0 0 d e


(B8)

σ2
5(X,Y ) =



a 0 0 0 0 0 0 0

0 b 0 0 0 0 0 0

0 0 a 0 0 0 0 0

0 0 0 b 0 0 0 0

0 0 0 0 a 0 0 0

0 0 0 0 0 b 0 0

0 0 0 0 0 0 a 0

0 0 0 0 0 0 0 b


(B9)

4. Exactly realizable quantum gates

We list below explicit forms, in terms of the elementary
braid matrices, for a set of gates that can be realised
exactly by braiding alone within the D(Q8).

S =

(
1 0

0 i

)
= σ−1

1 (B10)

H =
1√
2

(
1 1

1 −1

)
= σ1σ2σ1 (B11)

Pauli−X =

(
0 1

1 0

)
= σ2σ2 (B12)

Pauli− Y =

(
0 −i
i 0

)
= σ1σ1σ

−1
2 σ−1

2 (B13)

Pauli− Z =

(
1 0

0 −1

)
= σ1σ1 (B14)

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 = Pσ−1
3 σ−1

4 σ−1
5 Pσ3σ4Pσ3σ1

(B15)

controlled− Z =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 = σ1Pσ−1
3 σ5. (B16)

The two qubit controlled gates need to be accompanied
by a projective measurement P that projects the quan-
tum state onto the computable subspace to avoid leakage
to non-computable subspace.

5. S and T matrices

The modular S and T-matrices span the group SL(2,C)
[21]. The S-matrix can be regarded as the equivalent
of a character table in the context of quantum double
structure and can be computed as

SABΓΛ =
1

H

∑
hA∈CA,hB∈CB

Tr(Γ(g−1
A hBgA))

∗
Tr(Λ(g−1

B hAgB))∗,

(B17)
where the sum is carried out over all elements belonging
to the conjugacy classes CA and CB such that [hA, hB ] =
e is satisfied, and Γ and Λ are the centralizer irreducible
representations.The S-matrix is provided explicitly in [31]
and is provided for the sake of completeness in Table IV.
The T-matrix contains information about the topological
spins of the particles and can be computed as

TABΓΛ = δΓ,Λδ
A,Bei2πs

A
Γ =

1

dΓ
Tr(Γ(hA)), (B18)

where s is the topological spin and d is the quantum
dimension.
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TABLE IV. The modular S matrix of D(Q8). Here εij = 2δij − 1 and δij is the Kronocker delta.

S 1 1̄ ρj ρ̄j ∆ ∆̄ Φj Φ̃j Σj Σ̃j

1 1
8

1
8

1
8

1
8

1
8

1
4

1
4

1
4

1
4

1
4

1̄ 1
8

1
8

1
8

1
8

− 1
4

− 1
4

1
4

1
4

− 1
4

− 1
4

ρi
1
8

1
8

1
8

1
8

1
4

1
4

1
4
εij

1
4
εij

1
4
εij

1
4
εij

ρ̄i
1
8

1
8

1
8

1
8

− 1
4

− 1
4

− 1
4
εij − 1

4
εij

1
4
εij

1
4
εij

∆ 1
4

− 1
4

1
4

− 1
4

1
2

− 1
2

0 0 0 0

∆̄ 1
4

− 1
4

1
4

− 1
4

− 1
2

1
2

0 0 0 0

Φi
1
4

1
4

1
4
εij − 1

4
εij 0 0 1

2
δij − 1

2
δij 0 0

Φ̃i
1
4

1
4

1
4
εij − 1

4
εij 0 0 − 1

4
δij

1
4
δij 0 0

Σi
1
4

− 1
4

1
4
εij

1
4
εij 0 0 0 0 1

4
δij − 1

4
δij

Σ̃i
1
4

− 1
4

1
4
εij

1
4
εij 0 0 0 0 − 1

4
δij

1
4
δij

6. F and R symbols

In this section we provide the background material re-
quired to work out the braid matrices. The single qubit
braid matrices are given by σ1 = R and σ2 = F−1RF ,
where R and F correspond to the anyon interchange and
change of fusion basis, respectively, and are given by [21]

Rjkjijj =
∑
mi,mj

∑
mq,mp

σmj ,mpmi,mq ◦ R
(mi,mq,),(mj ,mp)
ji,jj

(B19)

and

[F
jq
ji,jj ,jk

]
jp
jl

=
∑

mi,mj ,mk,mq,mp

[
ji jj jl
mi mj ml

] [
jl jk jq
ml mk mq

]
×

[
jq jp ji
mq mp mi

] [
jp jj jk
mp mj mk

]
, (B20)

where ji and mi are the topological spins and mag-
netic moments, respectively, and the brackets denote the
quantum double Clebsch–Gordan coefficients which are
given by Eqs. (B23)-(B25). The σ

mj ,mp
mi,mq are elements of

the permutation operator σ which is equivalent to a de-
coupling followed by a recoupling where the anyons are
swapped, i.e.

σmj ,mpmi,mq =

[
ji jj jk
mi mj mk

] [
jk jj ji
mk mp mq

]
(B21)

and the R(mi,mq,),(mj ,mp)
ji,jj

elements are given by

R(mi,mq,),(mj ,mp)
ji,jj

=
∑
h

∑
g

Λjimi,mq (Pge)⊗ Λjjmj ,mp(Phg),

(B22)
where Λjimi,mq are the representations corresponding to
the topological charge ji mapping the quantum double
element Phg (a gauge transformation g followed by a flux

measurement Ph) to a matrix implementing the quantum
double action. The Clebsch–Gordan coefficients can be
derived analytically by unpacking the representations via
the projection operators in the representation theory of
the quantum double. In doing so, one finds that the
coefficients must satisfy∑
n

[
ji jj jl
mi mj ml

]∗
n

[
jq jp jk
mq mp mk

]
n

=

djk
|H|

∑
h,g

Λjkmkml(Phg)∗
∑

h′h′′=h

Λjimimq (Ph′g)Λjjmjmq (Ph′′g),

(B23)

where n is the multiplicity of the corresponding irre-
ducible representation. In the D(Q8) anyon model all
fusion outcomes have unit multiplicity meaning that we
can solve Eq. (B23) analytically since there is only one
term on the left hand side of the equation. Setting i = q,
j = p and k = l we find the solution corresponding to
the diagonal elements of the representations[
ji jj jk
mi mj mk

]
=√

djk
|H|

∑
h,g

Λjkmkmk(Phg)∗
∑

h′h′′=h

Λjimimi(Ph′g)Λ
jj
mjmj (Ph′′g).

(B24)

Finally, we can divide Eq. (B23) by the solution given
by Eq. (B24) to obtain the full solution[
jq jp jk
mq mp mk

]
(mi,mj ,mk)

=

√
djk
|H|

∑
h,g

Λjkmkml(Phg)∗
∑

h′h′′=h

Λjimimq (Ph′g)Λ
jj
mjmq (Ph′′g)√∑

h,g

Λjkmkmk(Phg)∗
∑

h′h′′=h

Λjimimi(Ph′g)Λ
jj
mjmj (Ph′′g)

.

(B25)
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This result is similar to that obtained with a different
method in [51] for regular finite groups. One can recover

Eq. (B25) from their derivation by considering the quan-
tum double of the discrete group.
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