Skip to main content
Log in

Ameliorated phase sensitivity through intensity measurements in a Mach–Zehnder interferometer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The ultimate achievable phase sensitivity in a Mach–Zehnder interferometer is given by the Heisenberg limit of \(1/\langle N\rangle \), with \(\langle N \rangle \) being the number of photons in the interferometer. However, the best-known phase sensitivity as obtained through intensity measurements is \(\approx 2/\langle N \rangle \). In this work, we provide examples of states that achieve improved phase sensitivity lesser than \(2/\langle N \rangle \), albeit greater than \(1/\langle N \rangle \). A modified scheme of the Mach–Zehnder interferometer that uses the first excited Fock state, single-mode squeezers, and an additional beam splitter is presented. It is shown that the modified scheme attains a phase sensitivity lesser than \(2/\langle N \rangle \), through intensity measurements. The effect of attenuation and noise on phase sensitivity is considered. Phase sensitivity superior to the standard quantum limit is seen to persist for a finite range of attenuation and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malacara, D., Servín, M., Malacara, Z.: Interferogram Analysis for Optical Testing. Taylor and Francis Group, London (2005)

    Google Scholar 

  2. The LIGO Scientific Collaboration: Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015)

  3. Adhikari, R.X.: Gravitational radiation detection with laser interferometry. Rev. Mod. Phys. 86, 121 (2014)

    Article  ADS  Google Scholar 

  4. Sepúlveda, B., Sánchez del Río, J., Moreno, M., Blanco, F.J., Mayora, K., Domínguez, C., Lechuga, L.M.: Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. J. Opt. A Pure Appl. Opt. 8, S561 (2006)

    Article  ADS  Google Scholar 

  5. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1639 (1981)

    Article  Google Scholar 

  6. Demkowicz-Dobrzański, R., Jarzyna, M., Kołodyński, J.: Quantum limits in optical interferometry. Prog. Opt. 60, 345 (2015)

    Article  ADS  MATH  Google Scholar 

  7. Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033 (1986)

    Article  ADS  Google Scholar 

  8. Dowling, J.P.: Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736 (1998)

    Article  ADS  Google Scholar 

  9. Holland, M.J., Burnett, K.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355 (1993)

    Article  ADS  Google Scholar 

  10. Sanders, B.C., Milburn, G.J.: Optimal quantum measurements for phase estimation. Phys. Rev. Lett. 75, 2944 (1995)

    Article  ADS  Google Scholar 

  11. Shapiro, J.H., Shepard, S.R., Wong, N.C.: Ultimate quantum limits on phase measurement. Phys. Rev. Lett. 62, 2377 (1989)

    Article  ADS  Google Scholar 

  12. Pezzé, L., Smerzi, A.: Phase sensitivity of a Mach–Zehnder interferometer. Phys. Rev. A 73, 011801 (2006)

    Article  ADS  Google Scholar 

  13. Pezzé, L., Smerzi, A., Khoury, G., Hodelin, J.F., Bouwmeester, D.: Phase detection at the quantum limit with multiphoton Mach–Zehnder interferometry. Phys. Rev. Lett 99, 223602 (2007)

    Article  ADS  Google Scholar 

  14. Pezzé, L., Smerzi, A.: Mach–Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett. 100, 073601 (2008)

    Article  ADS  Google Scholar 

  15. Lang, M.D., Caves, C.M.: Optimal quantum enhanced interferometry using a laser power source. Phys. Rev. Lett. 111, 173601 (2013)

    Article  ADS  Google Scholar 

  16. Lang, M.D., Caves, C.M.: Optimal quantum-enhanced interferometry. Phys. Rev. A 90, 025802 (2014)

    Article  ADS  Google Scholar 

  17. Higgins, B.L., Berry, D.W., Bartlett, S.D., Wiseman, H.M., Pryde, G.J.: Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393 (2007)

    Article  ADS  Google Scholar 

  18. Ataman, S., Preda, A., Ionicioiu, R.: Phase sensitivity of a Mach–Zehnder interferometer with single-intensity and difference-intensity detection. Phys. Rev. A 98, 043856 (2018)

    Article  ADS  Google Scholar 

  19. Ataman, S.: Optimal Mach–Zehnder phase sensitivity with Gaussian states. Phys. Rev. A 100, 063821 (2019)

    Article  ADS  Google Scholar 

  20. Jiao, G.-F., Zhang, K., Chen, L.Q., Zhang, W., Yuan, C.-H.: Nonlinear phase estimation enhanced by an actively correlated Mach–Zehnder interferometer. Phys. Rev. A 102, 033520 (2020)

    Article  ADS  Google Scholar 

  21. Bachor, H.-A., Ralph, T.C.: A Guide to Experiments in Quantum Optics. Wiley-VCH, Hoboken (2019)

    Book  Google Scholar 

  22. Walls, D.F.: Squeezed states of light. Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  23. Yuen, H.P.: Two photon coherent states of the radiation field. Phys. Rev. A 13, 2226 (1976)

    Article  ADS  Google Scholar 

  24. Loudon, R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  25. Bondurant, R.S., Shapiro, J.H.: Squeezed states in phase-sensing interferometers. Phys. Rev. D 30, 2548 (1984)

    Article  ADS  Google Scholar 

  26. The LIGO Scientific Collaboration: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613 (2013)

    Article  Google Scholar 

  27. Ou, Z.Y.: Fundamental quantum limit in precision phase measurement. Phys. Rev. A 55, 2598 (1997)

    Article  ADS  Google Scholar 

  28. Hall, M.J.W., Berry, D.W., Zwierz, M., Wiseman, H.M.: Universality of Heisenberg limit for estimates of random phase shifts. Phys. Rev. A 85, 041802(R) (2012)

    Article  ADS  Google Scholar 

  29. Berry, D.W., Hall, M.J.W., Zwierz, M., Wiseman, H.M.: Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates. Phys. Rev. A 86, 053813–1 (2012)

    Article  ADS  Google Scholar 

  30. Giovannetti, V., Maccone, L.: Sub-Heisenberg estimation strategies are ineffective. Phys. Rev. Lett. 108, 210404 (2012)

    Article  ADS  Google Scholar 

  31. Pezzé, L., Hyllus, P., Smerzi, A.: Phase-sensitivity bounds for two-mode interferometers. Phys. Rev. A 91, 032103 (2015)

    Article  ADS  Google Scholar 

  32. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996)

    Article  ADS  Google Scholar 

  33. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  34. Dorner, U., Demkowicz-Dobrzański, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)

    Article  ADS  Google Scholar 

  35. Demkowicz-Dobrzański, R., Dorner, U., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Quantum phase estimation with lossy interferometers. Phys. Rev. A 80, 013825 (2009)

    Article  ADS  Google Scholar 

  36. Ono, T., Hofmann, H.F.: Effect of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81, 033819 (2010)

    Article  ADS  Google Scholar 

  37. Kacprowicz, M., Demkowicz-Dobrzański, R., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photon. 4, 357 (2010)

    Article  ADS  Google Scholar 

  38. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Article  Google Scholar 

  39. Demkowicz-Dobrzański, R., Kołodyński, J., Gută, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Article  ADS  Google Scholar 

  40. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  41. Bai, K., Peng, Z., Luo, H.-G., An, J.-H.: Retrieving ideal precision in noisy quantum optical metrology. Phys. Rev. Lett. 123, 040402 (2019)

    Article  ADS  Google Scholar 

  42. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  43. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  44. Helstrom, C.: The minimum variance of estimates in quantum signal detection. IEEE Trans. Inf. Theory 14, 234 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hradil, Z., Řeháček, J.: Quantum interference and Fisher information. Phys. Lett. A 334, 267 (2005)

    Article  ADS  MATH  Google Scholar 

  47. Biedenharn, L.C., Louck, J.D., Carruthers, P.A.: Angular Momentum in Quantum Physics: Theory and Application. Addison-Wesley Publishing Company, Reading, MA (1981)

    MATH  Google Scholar 

  48. Campos, R.A., Saleh, B.E., Teich, M.C.: Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371 (1989)

    Article  ADS  Google Scholar 

  49. Lee, H., Kok, P., Dowling, J.P.: A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  50. Slussarenko, S., Weston, M.M., Chrzanowski, H.M., Shalm, L.K., Verma, V.B., Nam, S.W., Pryde, G.J.: Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photon. 11, 700 (2017)

    Article  ADS  Google Scholar 

  51. Daryanoosh, S., Slussarenko, S., Berry, D.W., Wiseman, H.M., Pryde, G.J.: Experimental optical phase measurement approaching the exact Heisenberg limit. Nat. Commn. 9, 4606 (2018)

    Article  ADS  Google Scholar 

  52. Sanaka, K., Resch, K.J., Zeilinger, A.: Filtering out photonic Fock states. Phys. Rev. Lett. 96, 083601 (2006)

    Article  ADS  Google Scholar 

  53. Zhang, L., Chan, K.W.C.: Scalable generation of multi-mode NOON states for quantum multiple-phase estimation. Sci. Rep. 8, 11440 (2018)

    Article  ADS  Google Scholar 

  54. Zadeh, I.E., et al.: Efficient single-photon detection with 7.7 ps time resolution for photon-correlation measurements. ACS Photon. 7, 1780 (2020)

    Article  Google Scholar 

  55. Afek, I., Ambar, O., Silberberg, Y.: High-NOON states by mixing quantum and classical light. Science 328, 879 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Polino, E., Valeri, M., Spagnolo, N., Sciarrino, F.: Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020)

    Article  ADS  Google Scholar 

  57. Waks, E., Diamanti, E., Yamamoto, Y.: Generation of photon number states. New J. Phys. 8, 4 (2006)

    Article  ADS  Google Scholar 

  58. Lvovsky, A.I., Hansen, H., Aichele, T., Benson, O., Mlynek, J., Schiller, S.: Quantum state reconstruction of the single Fock state. Phys. Rev. Lett. 87, 050402 (2001)

    Article  ADS  Google Scholar 

  59. Gisin, N., Ribory, G., Tiffel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  60. Tiedau, J., Bartley, T.J., Harder, G., Lita, A.E., Nam, S.W., Gerrits, T., Silberhorn, C.: Scalability of parametric down-conversion for generating higher-order Fock states. Phys. Rev. A 100, 041802(R) (2019)

    Article  ADS  Google Scholar 

  61. Fabre, C., Treps, N.: Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  62. Andersen, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016)

    Article  ADS  Google Scholar 

  63. Wu, L.-A., Kimble, H.J., Hall, J.L., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)

    Article  ADS  Google Scholar 

  64. Wu, L.-A., Xiao, M., Kimble, H.J.: Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 4, 1465 (1987)

    Article  ADS  Google Scholar 

  65. Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63, 032312 (2001)

    Article  ADS  Google Scholar 

  66. Caruso, F., Giovannetti, V., Holevo, A.S.: One-mode bosonic Gaussian channels: a full weak-degradability classification. New J. Phys. 8, 310 (2006)

    Article  ADS  Google Scholar 

  67. Eisert, J., Wolf, M.M.: Gaussian quantum channels. Quantum Information with Continuous Variables of Atom and Light, pp. 23–42. Imperial College Press, London (2007)

    MATH  Google Scholar 

  68. Holevo, A.S.: One-mode quantum Gaussian channels: structure and quantum capacity. Probl. Inf. Transm. 43, 1 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Solomon Ivan, J., Sabapathy, K.K., Simon, R.: Operator-sum representation for bosonic Gaussian channels. Phys. Rev. A 84, 042311 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Solomon Ivan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, J., Ivan, J.S. Ameliorated phase sensitivity through intensity measurements in a Mach–Zehnder interferometer. Quantum Inf Process 21, 36 (2022). https://doi.org/10.1007/s11128-021-03376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03376-7

Keywords

Navigation