Skip to main content
Log in

Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Many feasible and promising swarm intelligence algorithms have been proposed to solve the optimization problems, especially the global numerical optimization problems. It is easier to be in not a global state but a local optimal state, as the particle swarm optimization algorithm cannot update the population samples during the iterative process. And the search performance of the particle swarm optimization algorithm is poor in complex optimization problems. To solve these problems, a quantum particle swarm optimization algorithm based on a truncated mean stabilization strategy is designed. In the proposed algorithm, the processed particles are firstly intercepted with equal proportions, and then the worst particles are replaced by new particles during the iterative process, finally the global optimal value is located with the quantum wave function. The proposed strategy can improve population diversification and increase convergence efficiency. The performance of the quantum-behaved particle swarm optimization algorithm with truncated mean stabilization strategy is researched on a set of unimodal and multimodal benchmark function optimization problems, and is compared with several popular population-based algorithms. Experimental results show that the search accuracy and the convergence of the quantum particle swarm optimization algorithm with truncated mean stabilization strategy are better than other typical particle swarm optimization variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

None.

Code availability

None.

References

  1. Sankar, D.S., Deng, D.L., Duan, L.M.: Machine learning meets quantum physics. Phys. Today 72(3), 48–54 (2019)

    Article  Google Scholar 

  2. Fernandes, F.E., Yen, G.G.: Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol. Comput. 49, 62–74 (2019)

    Article  Google Scholar 

  3. Abdulkarim, S.A., Engelbrecht, A.P.: Time series forecasting with feedforward neural networks trained using particle swarm optimizers for dynamic environments. Neural Comput. Appl. 33(7), 2667–2683 (2021)

    Article  Google Scholar 

  4. Mu, X., Ottino, A., Ferreira, F.M., Zervas, G.: Optimization of 125-mu m heterogeneous multi-core fibre design using artificial intelligence. IEEE J. Sel. Top. Quantum Electron. 28(4), 1–13 (2022)

    Article  ADS  Google Scholar 

  5. Stuhlsatz, A., Lippel, J., Zielke, T.: Feature extraction with deep neural networks by a generalized discriminant analysis. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 596–608 (2012)

    Article  Google Scholar 

  6. Fabian, V.: Simulated annealing simulated. Comput. Math. Appl. 33(1–2), 81–94 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  8. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  10. Liu, L., Shan, L., Dai, Y.W., Liu, C.L., Qi, Z.D.: A modified quantum bacterial foraging algorithm for parameters identification of fractional-order system. IEEE Access 6, 6610–6619 (2018)

    Article  Google Scholar 

  11. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1942–1948 (1995)

  13. Brits, R., Engelbrecht, A.P., Bergh, F.V.D.: Locating multiple optima using particle swarm optimization. Appl. Math. Calc. 189(2), 1859–1883 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Lim, W.H., Isa, N.A.M.: An adaptive two-layer particle swarm optimization with elitist learning strategy. Inf. Sci. 273, 49–72 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Xu, G.Z., Zhao, X.C., Wu, T., Li, R., Li, X.M.: An elitist learning particle swarm optimization with scaling mutation and ring topology. IEEE Access 6, 78453–78470 (2018)

    Article  Google Scholar 

  16. Rahman, I.U., Wang, Z.D., Liu, W.B., Ye, B.L., Zakarya, M., Liu, X.H.: An N-state Markovian jumping particle swarm optimization algorithm. IEEE Trans. Syst. Man Cybern.-Syst. 51(11), 6626–6638 (2021)

    Article  Google Scholar 

  17. Hu, Y., Zhang, Y., Gong, D.W.: Multiobjective particle swarm optimization for feature selection with fuzzy cost. IEEE Trans. Cybern. 51(2), 874–888 (2021)

    Article  Google Scholar 

  18. Jin, C., Jin, S.W.: Prediction approach of software fault-proneness based on hybrid artificial neural network and quantum particle swarm optimization. Appl. Soft Comput. 35, 717–725 (2015)

    Article  Google Scholar 

  19. Ghorbani, M.A., Kazempour, R., Chau, K.W., Shamshirband, S., Ghazvinei, P.T.: Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran. Eng. Appl. Comput. Fluid Mech. 12(1), 724–737 (2018)

    Google Scholar 

  20. Yuan, H.: Wireless sensor network path optimization based on particle swarm algorithm. Comput. Eng. 36(4), 91–92, 96 (2010)

  21. Sundereswaran, K., Devi, V.: Application of a modified particle swarm optimization technique for output voltage regulation of boost converter. Electric Power Compon. Syst. 39(3), 288–300 (2011)

    Article  Google Scholar 

  22. Zhu, D., Linke, N.M., Benedetti, M.: Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 5(10), eaaw9918 (2019)

    Article  ADS  Google Scholar 

  23. Sun, J., Xu, W.B., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 111–116 (2004)

  24. Xu, W.B., Sun, J.: Adaptive parameter selection of quantum-behaved particle swarm optimization on global level. Adv. Intell. Comput. 3644, 420–428 (2005)

    Google Scholar 

  25. Li, G.Q., Wang, W.L., Zhang, W.W., You, W.B., Wu, F., Tu, H.Y.: Handling multimodal multi-objective problems through self-organizing quantum-inspired particle swarm optimization. Inf. Sci. 577, 510–540 (2021)

    Article  MathSciNet  Google Scholar 

  26. Sun, J., Feng, W., Wu, X.J., Palade, V., Xu, W.B.: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol. Comput. 20(3), 349–393 (2012)

    Article  Google Scholar 

  27. Coelho, L.D.: A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37(5), 1409–1418 (2008)

    Article  ADS  Google Scholar 

  28. Kamberaj, H.: q-Gaussian swarm quantum particle intelligence on predicting global minimum of potential energy function. Appl. Math. Calc. Comput. 229, 94–106 (2014)

    Article  MATH  Google Scholar 

  29. Li, Y.Y., Bai, X.Y., Jiao, L.C., Xue, Y.: Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl. Soft Comput. 56, 345–356 (2017)

    Article  Google Scholar 

  30. Lai, X.J., Hao, J.K., Fu, Z.H., Yue, D.: Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem. Expert Syst. Appl. 149, 113310 (2020)

    Article  Google Scholar 

  31. Xu, L., Muhammad, A., Pu, Y.F., Zhou, J.L., Zhang, Y.: Fractional-order quantum particle swarm optimization. PLoS ONE 14(6), e0218285 (2019)

    Article  Google Scholar 

  32. Bhatia, A.S., Saggi, M.K., Zheng, S.G.: QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution. Quantum Inf. Process. 19(10), 345 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. Li, Y.Y., Xiao, J.J., Chen, Y.Q., Jiao, L.C.: Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification. Neurocomputing 362, 156–165 (2019)

    Article  Google Scholar 

  34. Zhao, X.G., Liang, J., Meng, J., Zhou, Y.: An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Syst. Appl. 152, 113370 (2020)

    Article  Google Scholar 

  35. Kumar, N., Mahato, S.K., Bhunia, A.K.: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process. Soft Comput. 24(15), 11365–11397 (2020)

    Article  Google Scholar 

  36. Xiong, W., Guo, B., Yan, S.: Energy consumption optimization of processor scheduling for real-time embedded systems under the constraints of sequential relationship and reliability. Alex. Eng. J. 61(1), 73–80 (2022)

    Article  Google Scholar 

  37. Lu, X.L., He, G.: QPSO algorithm based on levy flight and its application in fuzzy portfolio. Appl. Soft Comput. 99, 106894 (2021)

    Article  Google Scholar 

  38. Jiang, X.D.: Iterative truncated arithmetic mean filter and its properties. IEEE Trans. Image Process. 21(4), 1537–1547 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Miao, Z.W., Jiang, X.D.: Additive and exclusive noise suppression by iterative trimmed and truncated mean algorithm. Signal Process. 99, 147–158 (2014)

    Article  Google Scholar 

  40. Elkhadir, Z., Chougdali, K., Benattou, M.: An effective network intrusion detection based on truncated mean LDA. In: 3rd International Conference on Electrical and Information Technologies, Rabat, Morocco, Nov. 15–18 (2017)

  41. Ye, X.G., Wang, P., Xin, G., Jin, J., Huang, Y.: Multi-scale quantum harmonic oscillator algorithm with truncated mean stabilization strategy for global numerical optimization problems. IEEE Access 7, 18926–18939 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62162041 and 61866024), the Top double 1000 Talent Programme of Jiangxi Province (Grant No. JXSQ2019201055), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest or competing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, NR., Xia, SH., Ma, Y. et al. Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy. Quantum Inf Process 21, 42 (2022). https://doi.org/10.1007/s11128-021-03380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03380-x

Keywords

Navigation