Skip to main content
Log in

Quantum public-key designated verifier signature

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the single-qubit rotations, a quantum public-key designated verifier signature (DVS) is proposed. In this scheme, a rotation vector is employed as the signatory’s secret key, and its corresponding quantum sequence is used as the public key. A quantum Diffie–Hellman key can be shared by the signatory and the designated verifier from their quantum public keys. The signatory encrypts the message string into some non-orthogonal particles and performs NOT operations on the quantum Diffie–Hellman key according to the message digest. After these steps, the quantum signature is generated. None but the designed partner can finish verifying of the received quantum signature. The proposed DVS has some other security properties such as source non-traceability and non-transferability. Its unforgeability can be guaranteed by the basic principle of the quantum mechanics. Furthermore, there is not any arbitrator in this DVS scheme. The verifier can finish verifying the signature without the help of any third party. Therefore, it is impossible for the arbitrator to become a bottleneck in the network. Our scheme is the first quantum DVS scheme based on asymmetric quantum public-key system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U. (ed.) Advances in Cryptology-Eurocrypt 1996, LNCS 1070, pp. 142–154. Springer, Berlin (1996)

    Google Scholar 

  3. Cao, F., Cao, Z.: An identity based universal designated verifier signature scheme secure in the standard model. J. Syst. Softw. 82, 643–649 (2009)

    Article  Google Scholar 

  4. Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–635 (2019)

    Article  Google Scholar 

  5. Kang, B., Boyd, C., Dawson, E.: A novel identity-based strong DVS scheme. J. Syst. Softw. 82(2), 270–273 (2009)

    Article  Google Scholar 

  6. Tian, H., Chen, X., Zhang, F., et al.: A non-delegatable strong designated verifier signature in ID-based setting for mobile environment. Math. Comput. Modell. 58, 1289–1300 (2013)

    Article  MathSciNet  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19, 62 (2020)

    Article  ADS  Google Scholar 

  9. Gottesman D., Chuang I.: Quantum digital signatures. arXiv: https://arxiv.org/abs/quant-ph/0105032 (2001)

  10. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  11. Zheng, X.Y., Kuang, C.: Arbitration quantum signature protocol based on XOR encryption. Int. J. Quant. Inf. 18(5), 2050025 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xin, X., He, Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    Article  ADS  Google Scholar 

  13. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quant. Inf. Process. 20, 26 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 42325 (2010)

    Article  ADS  Google Scholar 

  15. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quant. Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57(4), 994–1003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A. 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Niu, X.F., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy blind signature scheme based on entangled four-qubit cluster state. Commun. Theor. Phys. 70(7), 47–52 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77(3), 032348 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kaushik, A., Ajit, K.D., Debasish, J.: A novel approach for simple quantum digital signature based on asymmetric quantum cryptography. Int. J. Appl. Innov. Eng. Manag. 2(6), 13–17 (2013)

    Google Scholar 

  22. Xin, X., Yang, Q., Li, F.: Quantum public-key signature scheme based on asymmetric quantum encryption with trapdoor information. Quant. Inf. Process. 19, 233 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kawachi, A., Koshiba, T., Nishimura, H., Yamakami, T.: Computational indistinguishability between quantum states and its cryptographic application. J. Cryptol. 25, 528–555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key. Quant. Inf. Process. 17(10), 1–14 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Xin, X., Wang, Z., Yang, Q.: Quantum signature scheme based on Hadamard and Hπ/4 operators. Appl. Opt. 58(27), 7346–7351 (2019)

    Article  ADS  Google Scholar 

  26. Xin, X., Wang, Z., He, Q., et al.: New public-key quantum signature with quantum oneway function. Int. J. Theor. Phys. 58, 3282–3294 (2019)

    Article  MATH  Google Scholar 

  27. Yin, H.L., Yao, F., Zeng, B.C.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)

    Article  ADS  Google Scholar 

  28. An, X.B., Zhang, H., Zhang, C.M., et al.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Opt. Lett. 44(1), 139–142 (2019)

    Article  ADS  Google Scholar 

  29. Ding, H.J., Chen, J.J., Ji, L., et al.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45(7), 1711–1714 (2020)

    Article  ADS  Google Scholar 

  30. Zhang, C.H., Zhou, X.Y., Zhang, C.M., et al.: Twin-field quantum digital signatures. Opt. Lett. 46(15), 3757–3760 (2021)

    Article  ADS  Google Scholar 

  31. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA (1983)

    Chapter  Google Scholar 

  32. Islam, S.K.H., Amin, R., Biswas, G.P., et al.: Provably secure pairing-free identity-based partially blind signature scheme and its application in online e-cash system. Arab. J. Sci. Eng. 41(8), 3163–3176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, R., Huang, L.S., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)

    Article  ADS  Google Scholar 

  34. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: Delegation of the power to sign messages. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 79(9), 1338–1354 (1996)

    Google Scholar 

  35. Xin, X., Yang, Q., Li, F.: Quantum proxy signature with provable security. Modern Phys. Lett. A 35(24), 2050197 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shi, W.M., Zhou, Y.H., Yang, Y.G.: A real quantum designated verifier signature scheme. Int. J. Theor. Phys. 54, 3115–3123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi, W.M., Wang, Y.M., Zhou, Y.H., et al.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753–759 (2018)

    Article  ADS  Google Scholar 

  38. Xin, X., Wang, Z., Yang, Q., et al.: Quantum designated verifier signature based on Bell states. Quant. Inf. Process. 19, 79 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Xin, X., Wang, Z., Yang, Q., et al.: Identity-based quantum designated verifier signature. Int. J. Theor. Phys. 59, 918–929 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li Y., Susilo W., Mu y., et al. Designated verifier signature: definition, framework and new constructions. In: J. Indulska et al. (eds.) UIC 2007, LNCS 4611, pp. 1191–1200 (2007)

  41. Saeedni, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier signature scheme. In: J.I. Lim and D.H. Lee (eds.) ICISC 2003, LNCS 2971, pp. 40–54 (2004)

  42. Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated verifier signature schemes. In: H. Wang et al. (eds.) ACISP 2004, LNCS 3108, pp. 313–324 (2004)

  43. Rong, M.X., Xin, X.J., Li, F.G.: Quantum signature for designated verifier with strong security. Acta Physica Sinica 69, 190302 (2020)

    Article  Google Scholar 

  44. Zheng, M., Xue, K., Li, S., et al.: A practical quantum designated verifier signature scheme for E-voting applications. Quant. Inf. Process. 20, 230 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  45. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 1679 (2001)

    Article  Google Scholar 

  46. Chen, F.L., Liu, W.F., Chen, S.G., et al.: Public-key quantum digital signature scheme with one-time pad private-key. Quant. Inf. Process. 17, 10 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (CN) (No.22A413010 and No. 21A520050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Ding, L., Li, C. et al. Quantum public-key designated verifier signature. Quantum Inf Process 21, 33 (2022). https://doi.org/10.1007/s11128-021-03387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03387-4

Keywords

Navigation