Skip to main content
Log in

Cryptanalysis and improvement of a (tn) threshold group signature scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, a (tn) threshold group signature scheme is present in Qin et al. (Quantum Inf Process 19(2):71, 2020). In this paper, we point out that it is not a threshold signature scheme, namely any number of members can generate a valid signature. By introducing a secret sharing scheme, we show how to improve the original scheme to a threshold signature scheme. In the original scheme, the key for the one-time pad encryption is used more than once, which makes the verifier recover the key and fabricate any signature at his will. We show how to close this security loophole. And we also show how to add a round for checking the honesty of the arbitrator, and thus the trust put on the arbitrator can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  2. ElGamal, Taher: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  4. Gottesman,D., Chuang, I.: Quantum digital signatures. http://arxiv.org/abs/quant-ph/0105032. (2001)

  5. Hong, C., Jang, J., Heo, J., Yang, H.J.: Quantum digital signature in a network. Quantum Inf. Process. 19(1), 18 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Xin, X., Wang, Z., Yang, Q., Li, F.: Identity-based quantum designated verifier signature. Int. J. Theor. Phys. 59(3), 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  7. Qin, H., Tang, W.K.S., Tso, R.: Efficient quantum multi-proxy signature. Quantum Inf. Process. 18(2), 53 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chen, F., Zhang, L., Zhang, H.: Controlled swap attack and improved quantum encryption of arbitrated quantum signature schemes. Quantum Inf. Process. 18(5), 140 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wang, M., Wang, X., Zhan, T.: An efficient quantum digital signature for classical messages. Quantum Inf. Process. 17(10), 275 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kang, M., Choi, H., Pramanik, T., Han, S., Moon, S.: Universal quantum encryption for quantum signature using the swap test. Quantum Inf. Process. 17(10), 254 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhao, W., Shi, R., Shi, J., Huang, P., Guo, Y., Huang, D.: Multibit quantum digital signature with continuous variables using basis encoding over insecure channels. Phys. Rev. A 103, 012410 (2021)

    Article  ADS  Google Scholar 

  12. Zhang, C.-H., Zhou, X.-Y., Ding, H.-J., Zhang, C.-M., Guo, G.-C., Wang, Q.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl. 10, 034033 (2018)

    Article  ADS  Google Scholar 

  13. Yin, H.-L., Yao, F., Liu, H., Tang, Q.-J., Wang, J., You, L.-X., Zhang, W.-J., Chen, S.-J., Wang, Z., Zhang, Q., Chen, T.-Y., Chen, Z.-B., Pan, J.-W.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)

    Article  ADS  Google Scholar 

  14. Luo, YP., Tsai, SL., Hwang, T. et al.: On "A new quantum blind signature with unlinkability". Quantum Inf Process 16(4), 87 (2017). https://doi.org/10.1007/s11128-017-1536-8

  15. Yang, C.W., Luo, Y.P., Hwang, T.: Forgery attack on one-time proxy signature and the improvement. Quantum Inf Process 13, 2007–2016 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Luo, Y.P., Hwang, T.: Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf Process 13, 113–120 (2014)

    Article  ADS  Google Scholar 

  17. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf Process 12, 109–117 (2013)

  18. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  ADS  Google Scholar 

  19. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)

    Article  ADS  Google Scholar 

  20. Yin, H.-L., Yao, F., Chen, Z.-B.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)

    Article  ADS  Google Scholar 

  21. Yu-Shuo, L., Cao, X.-Y., Weng, C.-X., Jie, G., Xie, Y.-M., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Efficient quantum digital signatures without symmetrization step. Opt. Express 29(7), 10162–10171 (2021)

    Article  Google Scholar 

  22. An, X.-B., Zhang, H., Zhang, C.-M., Chen, W., Wang, S., Yin, Z.-Q., Wang, Q., He, D.-Y., Hao, P.-L., Liu, S.-F., Zhou, X.-Y., Guo, G.-C., Han, Z.-F.: Practical quantum digital signature with a gigahertz bb84 quantum key distribution system. Opt. Lett. 44(1), 139–142 (2019)

    Article  ADS  Google Scholar 

  23. Richter, S., Thornton, M., Khan, I., Scott, H., Jaksch, K., Vogl, U., Stiller, B., Leuchs, G., Marquardt, C., Korolkova, N.: Agile and versatile quantum communication: signatures and secrets. Phys. Rev. X 11, 011038 (2021)

    Google Scholar 

  24. Weng, C.-X., Yu-Shuo, L., Gao, R.-Q., Xie, Y.-M., Jie, G., Li, C.-L., Li, B.-H., Yin, H.-L., Chen, Z.-B.: Secure and practical multiparty quantum digital signatures. Opt. Express 29(17), 27661–27673 (2021)

    Article  ADS  Google Scholar 

  25. Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)

    Article  ADS  Google Scholar 

  26. Qin, H., Tang, W., Tso, R.: Quantum (t, n) threshold group signature based on bell state. Quantum Inf. Process. 19(2), 71 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Social Science Foundation of Fujian Province, China (FJ2020B044, FJ2021B163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Cheng, X. Cryptanalysis and improvement of a (tn) threshold group signature scheme. Quantum Inf Process 21, 37 (2022). https://doi.org/10.1007/s11128-021-03390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03390-9

Keywords

Navigation