Skip to main content
Log in

The influence of entanglement on complex dynamics of a quantum Stackelberg duopoly with heterogeneous expectations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper investigates the complex dynamics of a nonlinear discrete-time Stackelberg duopoly game model by applying quantum game theory, where the players have heterogeneous expectations: the leader is boundedly rational and the follower thinks with adaptive expectation. The local stability of quantum equilibrium, the influence of quantum entanglement on stability region and complex dynamic behavior of the system are analyzed. The result shows that the stability of quantum Nash equilibrium can increase with the quantum entanglement increasing. The complex chaotic behaviors can appear when the quantum quantity adjustment speeds of bounded rational leader increase to a critical value, and a larger quantum entanglement will enhance the stability of the quantum Stackelberg duopoly system. Numerical simulations demonstrate the complex dynamic features via bifurcation, largest Lyapunov exponent, fractal dimensions, strange attractors and sensitivity to initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Landsburg, S.E.: Quantum game theory. Not. AMS 42(4), 1089–1099 (2011)

    MathSciNet  Google Scholar 

  2. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272(5–6), 291–303 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Piotrowski, E.W., Sladkowski, J.: Quantum market games. Phys. A 312(1–2), 208–216 (2002)

    Article  MathSciNet  Google Scholar 

  6. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089–1099 (2003)

    Article  MathSciNet  Google Scholar 

  7. Keyl, M.: Fundamentals of information theory. Phys. Rep. 369(5), 431–548 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. Lond. A 455, 3129–3137 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46(1), 318–332 (2008)

    Article  Google Scholar 

  10. Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  11. Li, H., Du, J.F., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306(2), 73–78 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly. Phys. Lett. A 318(4–5), 333–336 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly with incomplete information. Phys. Lett. A 346(1–3), 65–70 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wang, X., Yang, X.H., Miao, L., et al.: Quantum Stackelberg duopoly of continuous distributed asymmetric information. Chin. Phys. Lett. 24(11), 3040–3043 (2007)

    Article  ADS  Google Scholar 

  15. Wang, X., Liu, D., Zhang, J.P.: Asymmetric model of the quantum Stackelberg duopoly. Chin. Phys. Lett. 30(12), 120302–120306 (2013)

    Article  Google Scholar 

  16. Yu, R., Xiao, R.: Quantum Stackelberg duopoly with isoelastic demand function. J. Comput. Inform. Syst. 8(9), 3643–3650 (2012)

    Google Scholar 

  17. Khan, S., Ramzan, M., Khan, M.K.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A: Math. Theor. 43(43), 375301–375314 (2010)

    Article  MathSciNet  Google Scholar 

  18. Khan, S., Khan, M.K.: Quantum Stackelberg duopoly in noninertial frame. Chin. Phys. Lett. 28(7), 70202–70203 (2011)

    Article  Google Scholar 

  19. Frackiewicz, P.: On subgame perfect equilibria in quantum Stackelberg duopoly with incompete information. Phys. Lett. A 382(48), 3463–3469 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ingrid, N.H., Anna, S.N.: Game Theory: Strategies, Equilibria and Theorems. Nova Science Publishers, Inc, New York (2009)

    Google Scholar 

  21. Khan, F.S., Solmeyer, N., Balu, R., et al.: Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17, 309 (2018). https://doi.org/10.1007/s11128-018-2082-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kolokoltsov, V.N., Malafeyev, O.A.: Understanding Game Theory. World Scientific, Singapore (2020)

    Book  Google Scholar 

  23. Rand, D.: Exotic phenomena in games and duopoly models. J. Math. Econ. 5, 173–184 (1978)

    Article  MathSciNet  Google Scholar 

  24. Shi, L., Le, Y., Sheng, Z.: Analysis of price Stackelberg duopoly game with bounded Rationality. Discrete Dyn. Nat. Soc. 2014, 1–8 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Peng, Y., Lu, Q.: Complex dynamics analysis for a duopoly Stackelberg game model with bounded rationality. Appl. Math. Comput. 271, 259–268 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Peng, Y., Lu, Q., Xiao, Y.A.: dynamic Stackelberg duopoly model with different strategies. Chaos Solitons Fract. 85, 128–134 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Xiao, Y., Peng, Y., Lu, Q., et al.: Chaotic dynamics in nonlinear duopoly Stackelberg game with heterogeneous players. Phys. A 492, 1980–1987 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yang, X.N., Peng, Y., Xiao, Y., et al.: Nonlinear dynamics of a duopoly Stackelberg game with marginal costs. Chaos Solitons Fract. 123, 185–191 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous player. Phys. A 320, 512–524 (2003)

    Article  MathSciNet  Google Scholar 

  30. Agiza, H.N., Elsadany, A.A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 49(3), 843–860 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Dubiel-Teleszynski, T.: Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale. Commun. Nonliear Sci. Numer. Simul. 16(1), 296–308 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Puu, T.: Attractors, Bifurcation and Chaos: Nonlinear Phenomena in Economics. Springer, Berlin (2003)

    Book  Google Scholar 

  33. Kaplan, J.L., Yorke, Y.A.: A regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 67, 93–108 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge two anonymous reviewers and Editor-in-Chief Yaakov S. Weinstein for their constructive comments and valuable suggestions. This research work is supported by Humanities and Social Science Projects of Ministry of Education of China (Grant No. 21YJA630116). The Foundation of the Educational Department of Liaoning Province (Grant No. LF201783613).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, C., Wang, Y. et al. The influence of entanglement on complex dynamics of a quantum Stackelberg duopoly with heterogeneous expectations. Quantum Inf Process 21, 56 (2022). https://doi.org/10.1007/s11128-021-03395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03395-4

Keywords

Navigation