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Abstract The non-increasing behavior of quantum coherence during any inco-
herent quantum process such as an incoherent quantum channel occurring in a
noisy environment is a general property of quantum coherence. We address that
the concatenation of the quantum Yang-Baxter matrix, which models a unitary
quantum channel, can mitigate these losses by offering relative improvements in
the coherence for different initial states prepared by two different strategies. By
appropriate choice of the parameters, even after the action of the channel the
coherence is maximized such that the reduced state of the output is maximally
coherent. These make it possible to create maximal coherence in realizing any
quantum information task in a noisy environment.
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1 Introduction

Quantum systems have the ability to exist in linear superpositions of different
physical states, which is one of their most fundamental properties. This physical
phenomenon is called quantum superposition. Quantum coherence, like quantum
entanglement and other quantum correlations, is a physical resource [1,2,3] that
derives from superposition and is at the center of various quantum properties
such as quantum information processing [4,5,6,7], quantum optics [8,9,10], quan-
tum metrology [11,12,13], quantum biology [14,15,16,17,18], nanoscale and quan-
tum thermodynamics [19,20,21,22,23,24,25,26], quantum algorithms [27,28], the
quantum game theory [29,30,31] which in turn are some of the most important
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applications of quantum physics, quantum information and computation science.
Recently, there has been a lot of effort to quantify coherence as a resource the-
ory [1], inspired by the resource theory of entanglement [32,33]. In [1], a rigorous
framework for quantifying coherence is proposed and several quantum coherence
measures like the l1 norm of coherence, the relative entropy of coherence [1], trace
norm of coherence [34], Tsallis relative α entropies [35] and relative Renyi α mono-
tones [36], geometric measure [37] have been presented. Many properties of quan-
tum coherence have been investigated using these coherence measures, including
the relationship between quantum coherence and quantum correlations [38,39,40,
41,42], the fact that quantum coherence is affected by quantum noise [43,44,45],
the coherence freezing phenomenon [43,46], and quantum uncertainty relations of
relative entropies of coherence [47].

The quantum coherence originates from the description of the wave function of
quantum systems and the classical physics laws cannot describe it. It can be said
that there are quantum states that have no classical analog because of quantum
coherence and this can only be expressed in character by the laws of quantum
mechanics [8,9]. These states play an essential role in the achievement of quantum
supremacy [48]. In fact, quantum coherence is widely accepted as a key resource
in the context of quantum information processing [49,50], and thus it is very im-
portant to quantify the amount of coherence present in a quantum state. Coher-
ence is very fragile and inevitably tends to environmental effects due to realistic
systems that interact with their external environment. This clearly means that
quantum coherence is usually very difficult to be created, sustained and manipu-
lated in quantum systems [49,50]. Therefore, it is very crucial and remarkable to
create, maintain and preserve quantum coherence in quantum computation and
quantum information processing. For these purposes, whatever the input state,
separable (product) or entangled, Yang-Baxter equation (YBEs) can be seen as a
good source of entanglement in the achievement of these processes as it transforms
all these states into entangled states.

YBE was originated from solving the δ-function interaction model by Yang [51]
and statistical models by Baxter [52], respectively. It was later introduced to solve
many quantum integrable models [53]. Recently, the YBE has been introduced to
the field of quantum information and quantum computation. YBE has a deep con-
nection with topological quantum computation and entanglement swapping [54,
55,56,57,58,59,60,61]. The unitary solution of the braided Yang-Baxter (i.e., the
braid group relation) and unitary solutions of the quantum YBE (QYBE) can
often be identified with universal quantum gates [62,63]. This provides a novel
way to study quantum entanglement via YBE. Later, it is shown that YBE can
be tested in terms of quantum optics [64]. It is found that any pure two-qudit
entangled state can be achieved by a universal Yang-Baxter matrix (YBM) as-
sisted by local unitary transformations. It is shown that tripartite entanglement
sudden death can happen in the Yang-Baxter system (YBS) which are the various
extensions of the YBEs for several matrices [65,66,67] and the ESD is sensitive to
the initial condition [68].

In this study, we present an S-matrix which is a solution to the braid rela-
tion. The S-matrix is found to be locally equivalent to the double control NOT
(DCNOT) gate. By using Yang-Baxterization, we derive a unitary matrix R(θ, φ).
Then, we show that arbitrary two-qubit entangled states can be generated by the
unitary matrix R(θ, φ). We shall study the behavior of quantum coherence for the
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reduced density matrices of the output states obtained by the action of the YBE
on two inputs prepared by two different strategies. For both strategies, a quantum
system is initially combined with an ancillary system. We address the overall co-
herence properties by evaluating the quantum coherence for the reduced system
(quantum system) undergone the unitary evolution in order to identify how much
information is contained in the quantum system.

This study is organized as follows. In Sec. 2, the main traits of the quantum
coherence that will be used in due course are summarized. The braid groups and
Yang-Baxterization approach are carried out in Sec. 3 and the main results of this
work are emphasized in Sec. 4. We end up with some concluding remarks.

2 Quantum Coherence

Let H be a d-dimensional Hilbert space. Let us fix a basis {|i〉}di=1 of vectors in
H. A quantum state ρ is called incoherent if it can be represented as follows

ρ =
∑

i

̺i|i〉〈i|. (1)

For a fixed basis {|i〉}di=1, the set of incoherent states is denoted as I : {ρ =
∑

i pi|i〉〈i|}.
Recently, a recipe for the qualification of the coherence has been supplied by

taking into consideration coherence as a quantum resource [1]. In this study, the
following set of criteria (so-called Baumgratz et al. criteria) has been proposed
that each potential coherence quantifier (C) should satisfy:
(1) Coherence has the non-negativity behavior: C(ρ) ≥ 0 and ρ is an incoherent
state if and only if the equality holds.
(2a) Monotonicity: C has the non-increasing behavior under the actions of com-
pletely positive and trace-preserving (CPTP) incoherent operations, i.e.,C(Φ(ρ)) ≤
C(ρ), where Φ is any CPTP incoherent operation. This means that incoherent
CPTP maps turn incoherent states into incoherent states, and therefore even if an
observer had access to individual outcomes, no coherence would be witnessed.
(2b) Strong monotonicity:

∑

i qiC(ρi) ≤ C(ρ), where ρi = (KiρK
†
i )/qi are post-

measurement states. The probabilities are given by qi = Tr(KiρK
†
i ), and Ki’s are

incoherent Kraus operators.
(3) Convexity: C has the non-increasing behavior under any convex mixture, i.e.,

∑

i

piC(ρi) ≤ C

(
∑

i

piρi

)

. (2)

Now, we can introduce the two types of quantum coherence, separately.
As a measure of quantum coherence, we first give the relative entropy of coher-

ence living in a quantum state represented by a bipartite matrix ρAB or shortly
ρ. It is defined as [1]

Cr(ρ) = S(ρdiag)− S(ρ), (3)

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy of ρ and if λi are the
eigenvalues of ρ then it can be expressed as S(ρ) = −

∑

i λi logλi. ρdiag denotes
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the diagonalized form of ρ. It is noted that Cr is a basis-dependent quantity.
Cr has a physical importance because of its similarity to the relative entropy of
entanglement in form. It physically states the best rate of the distilled maximally
coherent states that may be made by incoherent operations within the asymptotic
limit of the many copies of ρ [69]. The experimental measurement of Cr(ρ) may
interestingly be achieved without using full quantum state tomography [70].

Secondly, the l1 norm of coherence in which we focus on in this paper is given
by [1]

Cl1(ρ) =
∑

i 6=j

|ρij|, (4)

where ρij denotes the matrix elements of ρ. The l1-norm of coherence, which likeCr

is basis dependent, is currently not known to have any analog in the entanglement
resource theory [49]. Analogous to the relative entropy of coherence, the l1-norm
of coherence has an operational interpretation. Suppose Alice holds a state ρA

with the l1-norm of coherence Cl1(ρ
A). Bob holds another part of the purified

state of ρA. With the help of Bob performing local measurements and informing
Alice of his measurement outcomes using classical communication, Alice’s quantum
state will be in one pure state ensemble {pk, |ψk〉} with the l1-norm of coherence
∑

k pkCl1(|ψk〉). The l1-norm of coherence of Alice’s state is then increased from

Cl1(ρ
A) to

∑

k pkCl1(|ψk〉) since the l1-norm of coherence is a convex function.
The l1-norm of coherence is usually easy to evaluate and algebraically manip-

ulate for a given quantum state. Any continuous weak coherence monotone which
is a symmetric function of nonzero off-diagonal entries of the state must be a non-
decreasing function of the l1-norm of coherence and the l1-norm of coherence is
the maximum entanglement created by incoherent operations acting on the system
and an incoherent ancilla. [71]. Furthermore, the l1-norm of coherence is an impor-
tant link between different coherence measures and entanglement. For example,
the l1-norm of coherence is equal to the robustness of coherence for qubit states
and acts as an upper bound for the robustness of coherence in high dimensional
system [72]. Additionally, the logarithmic l1-norm of coherence is an upper bound
for the relative entropy of coherence. For any d-dimensional mixed state, it has
been proved that Cl1(ρ) ≥ Cr(ρ)/ log2 d and conjectured that Cl1(ρ) ≥ Cr(ρ) for
all states [50].

3 Braid Groups and Yang-Baxterization

A class of invariants of knots and links called quantum invariants can be con-
structed by using representations of the Artin braid group, and more specifically
by using solutions to the YBE [51,52], first discovered concerning 1+1 dimensional
quantum field theory, and two-dimensional models in statistical mechanics. Braid-
ing operators feature in constructing representations of the Artin braid group,
and in the construction of invariants of knots and links. A key concept in the
construction of quantum link invariants is the association of a YBM R to each
elementary crossing in a link diagram. The operator R is a linear mapping [55]
R : V ⊗ V → V ⊗ V defined on the two-fold tensor product of a vector space V ,
generalizing the permutation of the factors (i.e., generalizing a swap gate when V
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represents one qubit). Such transformations are not necessarily unitary in topolog-
ical applications. It is useful to understand when they can be replaced by unitary
transformations for quantum computing. Such unitary R-matrices can be used to
make unitary representations of the Artin braid group.

A solution to the YBE regarded as a mapping of a two-fold tensor product of
a vector space H = V ⊗ V to itself that satisfies the equation

(R⊗ I)(I⊗R)(R⊗ I) = (I⊗R)(R⊗ I)(I⊗R).

For the unitary solutions of the YBE, theRmatrix can be seen as a braiding matrix
or as a quantum gate in a quantum computer. In quantum computing, theRmatrix
of 4 × 4 is the change-of-matrix from the standard basis {|00〉, |01〉, |10〉, |11〉} to
the Bell basis of entangled states [73].

We first briefly review the theory of braid groups, the YBE and Yang-Baxterization
approach. Let Bn denotes the braid group on n strands. Bn is generated by ele-
mentary braids {b1, b2, · · · , bn−1} with the braid relations [63]

{

bibi+1bi = bi+1bibi+1 1 ≤ i < n− 2

bibj = bjbi |i− j| ≥ 2
(5)

where the notation bi ≡ bi,i+1 is used, bi,i+1 represents I1⊗I2⊗· · ·⊗Si,i+1⊗· · ·⊗In

and Ij is the identity matrix of the jth particle. The ith string crossing over the
(i+ 1)th string is represented by the elementary braid bi, and the (i+ 1)th string
crossing over the ith string is represented by its inverse b−1

i . By adjoining the top
strand of bi to the bottom strand of bj , the product of two braids bibj is created.

As is known, a unitary solution of YBE can be found via Yang-Baxterization
acting on the solution of the braid relation (see Appendix A for a detailed expla-
nation). For example, if bi has two eigenvalues, then the Yang-Baxterization of the
unitary braiding operator bi is

Ri(x) =
1√

1 + x2

(

bi + xb−1
i

)

(6)

where Ri ≡ Ri,i+1. The unitary R matrix satisfies the YBE which is of the form

Ri(x)Ri+1(xy)Ri(y) = Ri+1(y)Ri(xy)Ri+1(x) (7)

where multiplicative parameters x and y are known as the spectral parameters.
The asymptotic behavior of R(x) is x-independent, that is limx→∞R(x) = b−1

i .
The YBE can be used to build multi-spin interaction Hamiltonians in general. As
R is unitary, it can define the time evolution of a state |Ψ(0)〉 via YBM R(t)

|Ψ(t)〉 = Ri(t)|Ψ(0)〉 (8)

where Ri(t) is time dependent, which can be realized by specifying a corresponding
time-dependent parameter of Ri. By taking partial derivative of the state |Ψ(t)〉
with respect to time t, we have an equation

i~
∂|Ψ(t)〉
∂t

= i~

(
∂Ri(t)

∂t
R†

i (t)

)

Ri(t)|Ψ(0)〉

= H(t)|Ψ(t)〉 (9)



6 Durgun Duran

where H(t) = i~
(

∂Ri(t)
∂t R†

i (t)
)

is the Hamiltonian governing the evolution of the

state |Ψ(t)〉. Thus, the HamiltonianH(t) for the YBS is derived through the Yang-
Baxterization approach.

In the following, we propose a solution of the braid relation. Generally, the
standard eight-vertex model is a generalization of the ‘ice model’. Each vertex in
this model can be represented by a matrix element, which is the Boltzmann weight.
In [56], The authors abandoned the Boltzmann weight’s nonnegativity constraint
and discovered some interesting quantum gates that fulfill the YBE (see Appendix
A). Motivated by this study, we abandon the nonnegative condition and rearrange
the location of the model’s matrix elements. It is hoped that this would lead to
some fascinating results. The S-matrix takes the following form,

S =







0 a1 a2 0
a3 0 0 a4
a5 0 0 a6
0 a7 a8 0






, (10)

where ai(i = 1, · · · , 8) are the parameters to be determined. Adjusting a1a3 =
a2a5 = a4a7 = a6a8 = 1/2, we find a1 = a4 and a2 = a6. From the relation S2 = I

where I denotes the identity matrix, it is gotten the relation a21 = −a22. In the case
of a1 = −ia2 = eiφ/

√
2, a new S-matrix is found to be of the form

S =
1√
2







0 eiφ ieiφ 0

e−iφ 0 0 eiφ

−ie−iφ 0 0 ieiφ

0 e−iφ −ie−iφ 0






, (11)

where the parameter φ is real. One can verify that S2 = I is an involution and
S†S = SS† = I, thus the S-matrix is unitary.

For ith and (i+1)th lattices, S can be expressed in terms of spin operators,

S =
1√
2
eiφ
[
1 + i

2
(S+

j + S+
j+1) + (1− i)(S3

jS
+
j+1 − S+

j S
3
j+1)

]

+
1√
2
e−iφ

[
1− i

2
(S−

j + S−
j+1) + (1 + i)(S3

jS
−
j+1 − S−

j S
3
j+1)

]

,

(12)

where S±
j = S1

j ± iS2
j are the raising and lowering operators of spin-1/2 angular

momentum for the jth particle, respectively. The braid relation given by Eq. (5)
and S2 = I are similar to those for the usual permutation operator Pj,j+1 =
1
2 (I+σj ·σj+1) where σ denotes the Pauli matrices. Since the permutation operators
P and S do not have the same eigenvalues, one cannot transfer from one to another
by unitary transformations. So one can say that S is a new braiding matrix.
Unitary braid matrix can be construed as a quantum gate [55]. The S-matrix is
calculated to be locally equivalent to the DCNOT gate in the following way,

DCNOT =







1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0







= (A⊗B) · S · (C ⊗D), (13)
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where

A =
1√
2

(
1 e−iπ/4

i e−3iπ/4

)

, B =
1√
2

(
i e−iπ/4

1 −e−3iπ/4

)

, (14)

C =
1√
2

(

−eiπ/4 eiπ/4

1 1

)

, D =

(−1 0

0 −e3iπ/4

)

. (15)

We next derive a unitary matrixR from S by the Yang-Baxterization approach.
We write the YBE in the form of additive spectral parameters µ and ν as follows,

Ri(µ)Ri+1(µ+ ν)Ri(ν) = Ri+1(ν)Ri(µ+ ν)Ri+1(µ). (16)

The asymptotic behavior of R(µ) is µ-independent, that is limµ→∞ Ri(µ) = bi.
From a given solution of the braid relation S, a unitary matrix R(µ) can be
constructed by using the approach of Yang-Baxterization. It is easy to show that
R(µ) = ̺(µ)(I + iµS) is a rational solution of YBE (µ is real), where ̺(µ) is
a normalization factor. One can choose appropriate ̺(µ) to ensure that R(µ) is
unitary. According to the inverse scattering method, R−1(µ) is proportional to
R(−µ). For the purpose of finding a unitary matrix R(µ), R†(µ) should be equal
to the inverse matrix of R(µ) or R−1(µ). As a result, we obtain the unitary matrix
R(µ) written in terms of the S-matrix, R(µ) = (I+ iµS)/

√

1 + µ2. By introducing

a new variable θ = γt that can be time-dependent with cos θ = µ/
√

1 + µ2 and

sin θ = 1/
√

1 + µ2, the matrix R(µ) can be rewritten as

R(θ, φ) = sin θI+ i cos θS. (17)

It is noted that R(θ, φ) conveys the standard basis to the Bell basis of entangled
states. On the other hand, whatever the initial state is, the product or any other
state, when the matrix R acts on this state, it transforms into an entangled state.
So, it can be called as an entangler.

4 Two Strategies and Dynamics of Quantum Coherence

In this section, we shall study the evolution of a state ρSA formed by system S and
some static ancillary system A for two different strategies that are one-qubit and
two-qubit strategies and then concentrate on the determination of the quantum
coherence. We first consider the one-qubit strategy where the same R(θ, φ) acts
globally on N -times both the state of the system S and the state of the ancillary
system A. Finally, we take into account the two-qubit strategy where while R(θ, φ)
acts on one of the subsystems and the fixed state of the ancillary system, it does
not affect the state of the other subsystems.
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Fig. 1 (color online) Schematic representation of the concatenation of R(θ, φ) by one-qubit
strategy.

4.1 One-qubit Strategy

By referring to Fig. 1, we assume that the input state is product of the state
of the system |ΨS〉 =

√
1− x|0〉 + √

x|1〉 with x ∈ [0, 1] and the state of the
ancillary system |0A〉. So, the corresponding input density matrix is given by
ρSA = |ΨSA〉〈ΨSA|. Since each output state is an input for the subsequent actions
of the channel adR(·) = R(θ, φ)(·)R(θ,φ)† where adX denotes the adjoint action
of X, the last output state for the N-times actions of the R(θ, φ) can be expressed
as

|Φ(N)
SA 〉 = R(θ, φ)R(θ, φ) · · ·R(θ, φ)|ΨSA〉, (18)

where R(θ, φ)|ΨSA〉 = |Φ(1)〉 is the first output state. We directly take the unitary
YBM R(θ, φ) given by Eq. (17) as the evolution operator U(t) and the output den-

sity matrices for each outcome are denoted as σ
(i)
SA = |Φ(i)〉〈Φ(i)|, (i = 1, 2, · · · , N),

henceforward. Then for input state ρSA, the output density matrix for N -times
action of the same R(θ, φ) (concatenation of YBM) is found to be

σ
(N)
SA = R(θ, φ) · · ·R(θ, φ)

︸ ︷︷ ︸

N times

ρSAR(θ, φ)
† · · ·R(θ, φ)†

︸ ︷︷ ︸

N times

. (19)

Parallel to the Eq. (18), the output density matrix σ
(1)
SA for the first action of the

channel adR on the input state ρSA is evaluated as σ
(1)
SA = R(θ, φ)ρSAR(θ, φ)

†.

Similarly, the second output state σ
(2)
SA can be written as follows

σ
(2)
SA = R(2)(θ, φ)ρSAR

(2)(θ, φ)† = R(θ, φ)σ
(1)
SAR(θ, φ)

†.

The explicit form of the reduced state σ
(N)
S obtained by tracing out the output

state σ
(N)
SA is given in Appendix B. Particularly, the output state of the whole

system after applying the channel adR(·) = R(·)R† has full-rank in which all
matrix elements of the output is nonzero.

From Eq.(4), we can now calculate the quantum coherence for the output

state of the system σ
(N)
S with size 2 × 2 by tracing out the ancillary system A,

σ
(N)
S = TrA(σ

(N)
SA ), as follows in the one-qubit basis {|0〉, |1〉}

Cl1(σ
(N)
S ) =

1

2

{√

|∆+ 4δǫ2 cos4Nθ| for odd N
√

|∆+ 4δǫ2 sin4Nθ| for even N (20)
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Fig. 2 (color online) The behavior of the coherence given by Eq. (20) for the two subsequent

output states of the quantum system σ
(1)
S and σ

(2)
S obtained by the first two successive actions

of the channel adR on the input density matrix ρSA. For both plots, we take φ = π/4. In (a),
the coherence takes place the maximum at the values of nπ < θ < (n+ 1)π and intermediate
values of x and it is the maximum for the values of θ = nπ/2 in (b).

with ∆ = α2

8 + αβǫ+ 2ǫ2γ where the parameters are given as

α = 4(1− 2x) sin 2Nθ,

β = sinφ cos2Nθ + cosφ(2− 3 cos2Nθ),

γ = −4 sin2Nθ cos 2Nθ,

δ = 1− sin 2φ, ǫ =
√

2x(1− x).

It is noted that since R(θ, φ) given by Eq. (17) corresponds to the identity
operator for θ = π/2 coherence is reduced to that of the value of the initial state
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Cl1(ρS) = Cl1(σ
(N)
S ). On the other hand, for the other values of θ with an integer

n it coincides the S-matrix given by Eq. (11) up to a phase.
In Fig. 2, we plot the behavior of the quantum coherence of the output den-

sity matrix σ
(N)
S representing the quantum system S obtained by tracing out the

ancillary system A for the two successive actions of YBE on the input state ρSA

versus the parameters x and θ. It is obviously said that in Fig. 2(a), the coherence
attains its maximum values for the values of nπ < θ < (n+ 1)π and intermediate
values of x, especially x = 1/2 in which the input state corresponds to the qubit
state (superposition of the |0〉 and |1〉) with equal probability whereas it takes
place the maximum values for the values of θ = nπ/2 in Fig. 2(b). It can be seen
that for the next actions of the YBE, that is N = 3, 4, ..., the values of coher-
ence can be maximized depending on the parameters x and θ. So, the quantum
coherence can be kept at high values to achieve a better quantum information and
communication task.

4.2 Two-qubit Strategy

In this section, we consider the usage of side entanglement according to the model
of Fig. 3. In this case, the channel acts globally on a part of the two-qubit input
state of an entangled quantum system and a fixed state of an accessible ancillary
system. No action is applied to the other part of the quantum system.

Fig. 3 (color online) Model for concatenation of R(θ, φ) exploiting entanglement between the
input system S and an accessible reference system A by two-qubit strategy.

Let |ΨS〉 =
√
1− x|01〉+√

x|10〉 be an entangled state between the reference
system and the channel’s input. On the one hand, the channel acts locally on
one of the parts of the entangled state and state of the reference system. Then,
by considering the initial density operator ρSA = |ΨSA〉〈ΨSA| and by using the

abbreviation R = R(θ, φ) the output state of the system σ
(N)
S can be found by

tracing out the reference system for N -times actions of the YBE

σ
(N)
S = TrA

{

(id⊗R) · · · (id⊗R)ρSA(id⊗R†) · · · (id⊗R†)
}

, (21)

where (id⊗R)ρSA(id⊗R†) = |Ψ1〉〈Ψ1| = σ
(1)
SA. The matrix elements of the output

state σ
(N)
S are explicitly given in Appendix C.

The quantum coherence for this output can again be expressed as a piecewise
function in two-qubit standard basis {|00〉, |01〉, |10〉, |11〉}

Cl1(σ
(N)
S ) =

1

2







2b+
√
2ǫ
(

2b+
√

|a+ 5 sin4Nθ|+ cos2Nθ
)

for odd N

2b+
√
2ǫ
(

2b+
√

|a+ 5 cos4Nθ|+ sin2Nθ
)

for even N
(22)
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Fig. 4 (color online) The behavior of the coherence given by Eq. (22) for the first two succes-
sive actions of the YBE on the input state. As the number of channel use increases, the number
of regions where the coherence attains its maximum value also increases within the same range
of the parameters. On the one hand, the loss of the quantum coherence can be mitigated by
using the successive actions of the YBE as a channel. The coherence attains its maximum
values for the values of the parameter 1/4 ≤ x ≤ 3/4 and θ = (n+ 1/2)π/2 with an integer n
in Fig. 4(a) whereas for the same range of x it takes place the maximum at θ = (n+ 1/2)π/4
in Fig. 4(b).

where the parameters are given by a = (−1)N+1 cos 2Nθ and b = | sin 2Nθ|/
√
2.

It is noted that the coherence given by Eq. (22) is independent of the parameter
ϕ contrary to the previous case. The more successive actions this channel has, the
more effective it becomes possible to use the coherence in achieving the applications
of the quantum information and computation processes.

The behavior of the coherence given by Eq. (22) for the two-qubit strategy
is plotted in Fig. 4 versus the parameter x and θ for two successive actions of
the quantum channel on the input state. In Fig. 4(a), the coherence attains its
maximum values at the values of parameters θ = (n+1/2)π/2 with an integer n and
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the intermediate values of x for the first action of the channel whereas it takes place
the small values for the values of θ = nπ/2 almost independent of x. Especially, it
dramatically vanishes for the smallest and the largest values of x, namely x = 0 and
x = 1, and θ = nπ/2. On the other hand, it is seen that as the number of channel
usage increases, the number of regions where the coherence is maximum increases
in Fig. 4(b). The coherence has the maximum points for the values of θ = nπ/2
in Fig. 2(b) while it has two maximum values even just between θ ∈ [0, π/2]. In
other words, the value of coherence obtained by this strategy is greater than for

the previous strategy. Additionally, it is observed that Cl1(σ
(N)
S ) = 2 because the

state is maximally coherent. For the 3-qubit input state (quantum and ancillary
systems), it is equal to Cl1(ρSA) = 2

√

x(1− x) =
√
2ǫ. So, it reaches its maximum

values x = 1/2 where the two-qubit quantum state corresponds to the maximally
entangled pure state, namely the Bell state. It is concluded that the coherence may
be kept at high values in achieving the applications of the quantum information
and computation tasks.

For both strategies, the output states σ
(N)
SA of the whole system SA have full-

rank where their ranks equal the largest possible for a matrix of the same dimen-
sions, which is the lesser of the number of rows and columns. In the first strategy,
the density matrix of the whole system is a 4×4 matrix that is the two-qubit state

and for its reduced density matrix σ
(N)
S , the maximum value that coherence can

take is 1 for the certain choice of the parameters. Although there are some fluc-
tuations in the plots drawn for the reduced density matrices of the output states
obtained as a result of two consecutive uses of the quantum channel in Fig. 2, this
situation disappears with more use of quantum channel (the adjoint action of the
YBM). While in the second strategy it is an 8× 8 matrix (three-qubit state) and
the coherence for the reduced state of this output can reach the value 2, which
means that the state is maximally incoherent. Compared to the first strategy, both
the number of regions where the coherence is maximum and the maximum value
that the coherence can reach are higher in the range of θ ∈ [0, 2π] for almost same
range of the parameter x. In view of these observations, it can be said that the
concatenation of YBE provides a further improvement in the coherence.

5 Concluding Remarks

In this paper, we have studied the behavior of quantum coherence for two different
state preparation strategies under the actions of the YBE on two different states.
Our results clearly show that the actions of the YBE on the different input states
have different effects on quantum coherence. It is well-known that quantum coher-
ence monotonically decreases under the action of an incoherent quantum channel
or any local operation. However, we have observed relative enhancements of co-
herence for some initial states prepared by two different strategies adjusting the
parameters. Especially, it can be concluded that the reduced state obtained by
the second strategy is maximally coherent since the coherence is equal to 2. We
should note that further improvements in coherence are possible with the choice
of the parameters and more successive actions of the quantum channel or equiva-
lently, the adjoint actions of YBM R. In other words, it is important to select the
appropriate parameters to improve the efficiency of some quantum information
processes.
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Appendices

A The QYBE and the unitary R(x) matrix via Yang-Baxterization

As stated in the main text, the braid group representation (BGR) b-matrix and
QYBE solution R-matrix are n2 × n2 matrices acting on V ⊗ V where V is an
n-dimensional vector space. As b and R act on the tensor product Vi ⊗ Vi+1, we
denoted them by bi and Ri, respectively.

The BGR b-matrix has to satisfy the braid relation given by Eq.(5) while the
QYBE has the form in Eq. (7) with the asymptotic condition R(x = 0) = b. From
these two equations both b and R(x) are fixed up to an overall scalar factor. The
QYBE in Eq. (7) solution R-matrices usually depend on the deformation param-
eter q and the spectral parameter x. With two such parameters, there exist two
approaches to solving the Eq. (7). Taking the limit of x → 0 leads to the braid
relation (5) from the QYBE (7) and the BGR b-matrix from the R-matrix. Con-
cerning relations between the BGR and x-dependent solutions of the Eq. (7), we
either reduce a known R(x)-matrix to a BGR b-matrix, see [74,75,76], or con-
struct a R(x)-matrix from a given BGR b-matrix. Such a construction is called
Yang-Baxterization.

In this section, we apply Yang-Baxterization to derive a unitary R(x)-matrix.
As an example, we will present a solution of the BGR for the eight-vertex model
and its corresponding unitary R-matrix via Yang-Baxterization. In terms of non-
vanishing Boltzman weights w1, · · · , w8 the BGR b-matrix of the eight-vertex
model assumes the form

b =







w1 0 0 w7

0 w5 w3 0
0 w4 w6 0
w8 0 0 w2






. (23)

Choosing suitable Boltzman weights leads to solutions of the braid relation given
by Eq. (5). Setting w1 = w2 = w5 = w6 gives us w2

1 = w2
3 = w2

4 and w2
3+w7w8 = 0.

In the case of w3 6= w4, we have w3 = −w4 and w1 = ±w3. The BGR b-matrix
has the form

b± =
1√
2







w1 0 0 w7

0 w1 ±w1 0
0 ∓w1 w1 0

w2
1/w7 0 0 w1







⇐⇒







1 0 0 q
0 1 ±1 0
0 ∓1 1 0

−q−1 0 0 1






. (24)

It has two eigenvalues λ1 = 1− i and λ2 = 1 + i. The corresponding R(x)-matrix
via Yang-Baxterization is obtained to be

R±(x) = b± + xλ1λ2b
−1
± (25)

=







1 + x 0 0 q(1− x)
0 1 + x ±(1− x) 0
0 ∓(1− x) 1 + x 0

−q−1(1− x) 0 0 1 + x






. (26)
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Assume the spectral parameter x and the deformation parameter q to be complex
numbers. The unitarity condition

R±(x)R†
±(x) = R†

±(x)R±(x) ∝ ρ±I (27)

leads to the following equations







||1 + x||2 + ||q||2||1− x||2 = ρ±

||1 + x||2 + 1
||q||2 ||1− x||2 = ρ±

||1 + x||2 + ||1− x||2 = ρ±

(1− x)(1 + x̄)− (1 + x)(1− x̄) = 0

−q−1(1− x)(1 + x̄) + q̄(1 + x)(1− x̄) = 0

(28)

which specify x real and q living at a unit circle.

Introducing the new variables of angles θ and φ as cos θ = 1/
√
1 + x2, sin θ =

x/
√
1 + x2 and q = e−iφ we represent the R±(x)-matrix in a new form

R±(θ) = cos θb±(φ) + sin θb−1
± (φ) (29)

in which the BGR b±(φ)-matrix is given by

b±(φ) =
1√
2







1 0 0 e−iφ

0 1 ±1 0
0 ∓1 1 0

−eiφ 0 0 1






. (30)

By different choosing Boltzman weights as stated in the main text, the S-matrix
(or b-matrix) given by Eq. (11) can be obtained by above recipe so that it is a
solution of BGR.

B Matrix elements of σ
(N)
S

for the first strategy

For the first strategy, the matrix elements of the reduced density matrix σ
(N)
S

obtained by tracing out over the ancillary system A in the whole system SA, that

is σ
(N)
S = TrA

[

σ
(N)
SA

]

are given in one-qubit basis {1 = |0〉, 2 = |1〉}

σ
(N)
11 =

1

2

{
1 + (α sec2Nθ)/8− ǫ cosφ sin 2Nθ for odd N
1 + (α csc2Nθ)/8− ǫ cosφ sin 2Nθ for even N

(31)

σ
(N)
12 =

1

2

{
ǫ
[
2− (2− i+ e2iφ) cos2Nθ

]
+

√
2αeiφ/4 for odd N

ǫ
[
2− (2− i+ e2iφ) sin2Nθ

]
−

√
2αeiφ/4 for even N

(32)

σ
(N)
22 = 1− σ

(N)
11 . (33)

For this output, l1-norm of the coherence is calculated from the Eq. (4) as follows

Cl1(σ
(N)
S ) = |σ(N)

12 |+ |σ(N)
21 | = 2|σ(N)

12 | = 2|σ(N)
21 |. (34)
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C Matrix elements of Eq. (21)

For the second strategy, the density matrix of the whole system σ
(N)
SA has the full-

rank where all elements are nonzero. This is also the case for its reduced density

matrix σ
(N)
S obtained by tracing out over the ancillary system A.

The matrix elements of the output state σ
(N)
S given by Eq. (21) can be explicitly

written in the two-qubit computational basis {1 = |00〉,2 = |01〉,3 = |10〉,4 =

|11〉}. The diagonal elements of σ
(N)
S can be expressed as

σ
(N)
11 =

1

2
(1− x)

{
cos2Nθ for odd N
sin2Nθ for even N

(35)

σ
(N)
22 =

1

2
(1− x)

{
1 + sin2Nθ for odd N
1 + cos2Nθ for even N

=
1− x

x
σ
(N)
33 (36)

σ
(N)
44 = 1− σ

(N)
11 − σ

(N)
22 − σ

(N)
33 . (37)

and the off-diagonal elements are given by

σ
(N)
12 = σ

(N)∗
21 =

(−1)N

2
√
2

(1− x)eiφ sin 2Nθ

=
x− 1

x
σ
(N)
34 =

x− 1

x
σ
(N)∗
43

=

√

1− x

x
σ
(N)
13 =

√

1− x

x
σ
(N)∗
31

= −
√

1− x

x
σ
(N)
24 = −

√

1− x

x
σ
(N)∗
42 , (38)

σ
(N)
14 =

1√
2
ǫe2iφ

{
cos2Nθ for odd N
sin2Nθ for even N

= σ
(N)∗
41 , (39)

σ
(N)
23 =

1√
2
ǫ

{
(2 + i) sin2Nθ − i for odd N
(2− i) cos2Nθ + i for even N

= σ
(N)∗
32 . (40)

Some of the matrix elements of the reduced density matrix σ
(N)
S such as the diag-

onal elements σ
(N)
ii , (i = 1, 2, 3, 4) and σ

(N)
14 = σ

(N)∗
41 , σ

(N)
23 = σ

(N)∗
32 are obtained

as piece-wise functions, while the rest give the same result for every value of N .

In this strategy, l1-norm of coherence is written as the positive sum of each of
the matrix elements given by Eqs. (30)-(32) as follows

Cl1(σ
(N)
S ) = 2

(

|σ(N)
12 |+ |σ(N)

13 |+ |σ(N)
14 |+ |σ(N)

23 |+ |σ(N)
24 |+ |σ(N)

34 |
)

. (41)
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