Skip to main content
Log in

Teleportation of atomic external states on the internal degrees of freedom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The neutral atoms quantized atomic external momenta states are widely used to avoid the decoherence risk and to complete numerous quantum information protocols such as teleportation. Here we suggest a scheme for the teleportation of an unknown superposition of external atomic quantized momenta states of a neutral atom on the internal energy levels of another atom. The scheme is executed through off-resonant and resonant atomic Bragg diffraction (ABD) under cavity QED scenario. The experimental feasibility of the proposal has also been explored using appropriate experimental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eisberg, R., Resnick, R.: Quantum physics of atoms, molecules, solids, nuclei and particles. Wiley, New York (1985)

    Google Scholar 

  2. Feynman, R.P., Leighton, R.B., Sands, M., Hafner, E.M.: The Feynman Lectures on physics. Am. J. Phys. 33(9), 750–752 (1965)

    Article  ADS  Google Scholar 

  3. Liboff, R.L.: Introductory quantum mechanics. Addison-Wesley Publishing Company, Massachusetts (1993)

    MATH  Google Scholar 

  4. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  5. Schrodinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555–563 (1935)

    Article  ADS  MATH  Google Scholar 

  6. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  7. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28(14), 938–941 (1972)

    Article  ADS  Google Scholar 

  8. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-BohmGedankenexperiment: a new violation of bell’s inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982)

    Article  ADS  Google Scholar 

  9. Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398(6724), 189–190 (1999)

    Article  ADS  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  11. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public-Key Distribution and Coin Tossing. Proceedings of the International Conference on Computers, Systems and Signal Processing Bangalore, India (1984)

  12. Bennett, C.H., Brassard, G., Crepeau, C., Joza, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bouwemeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nat. (London) 390(660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  14. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors’’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  ADS  Google Scholar 

  16. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nat. (London) 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  17. Nawaz, M., Islam, R., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B: At. Mol. Opt. Phys. 51(7), 075501 (2018)

    Article  ADS  Google Scholar 

  18. Mattle, Weinfurter, K., Kwiat, H.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    Article  ADS  Google Scholar 

  19. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W-states. Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  20. Islam, R., Ikram, M., Ahmed, R., Khosa, A.H., Saif, F.: Atomic state teleportation: from internal to external degrees of freedom. J. Mod. Opt. 56(7), 875–880 (2009)

    Article  ADS  MATH  Google Scholar 

  21. Loock, P.V., Braunstein, S.L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84(15), 3482–3485 (2000)

    Article  ADS  Google Scholar 

  22. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402(6760), 390–393 (1999)

    Article  ADS  Google Scholar 

  23. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396(6706), 52–55 (1998)

    Article  ADS  Google Scholar 

  24. Boschi, D., Brance, S., De-Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121–1125 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Riebe, M., Haffner, H., Roos, C.F., Hansel, W., Benhelm, J., Lancaster, G.P.T., Korber, T.W., Becher, C., SchmidtKaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)

    Article  ADS  Google Scholar 

  26. Davidovich, L., Zagury, N., Brune, M., Raimond, J.M.S., Haroche, S.: Teleportation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A 50(2), R895–R898 (1994)

    Article  ADS  Google Scholar 

  27. Moussa, M.H.Y.: Teleportation with identity interchange of quantum states. Phys. Rev. A 55(5), R3287–R3290 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62(2), 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Oliveira, M.C., Milburn, G.J.: Discrete teleportation protocol of continuum spectra field states. Phys. Rev. A 65(3), 032304 (2002)

    Article  ADS  Google Scholar 

  30. Cho, J., Lee, H.W.: Quantum teleportation with atoms trapped in cavities. Phys. Rev. A 70(3), 034305 (2004)

    Article  ADS  Google Scholar 

  31. Zheng, S.B., Guo, G.C.: Scheme for atomic-state teleportation between two bad cavities. Phys. Rev. A 73(3), 032329 (2006)

    Article  ADS  Google Scholar 

  32. Chimczak, G., Tanas, R.: Improving fidelity in atomic state teleportation via cavity decay. Phys. Rev. A 75(2), 022317 (2007)

    Article  ADS  Google Scholar 

  33. Tumminello, M., Ciccarello, F.: Teleportation of atomic states via position measurements. Phys. Rev. A 77(2), 023825 (2008)

    Article  ADS  Google Scholar 

  34. Dajka, J., Luczka, J.: Swapping of correlations via teleportation with decoherence. Phys. Rev. A 87(2), 022301 (2013)

    Article  ADS  Google Scholar 

  35. He, Q., Zarate, L.R., Adesso, G., Reid, M.D.: Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115(18), 180502 (2015)

    Article  ADS  Google Scholar 

  36. Shi, L., Zhou, K., Wei, J., Zhu, Y., Zhu, Q.: Quantum controlled teleportation of arbitrary two-qubit state via entangled states. Adv. Math. Phys. 2018, 1–4 (2018)

    MATH  Google Scholar 

  37. Li, Y.L., Zu, C.J., Wei, D.M.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quant. Inf. Pro. 18(1), 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Islam, R., Khosa, A.H., Saif, F., Bergou, J.A.: Generation of atomic momentum cluster and graph states via cavity QED. Quant. Inf. Proc. 12(1), 129–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kunze, S., Durr, S., Rempe, G.: Bragg scattering of slow atoms from a standing light wave. Europhys. Lett. 34(5), 343–348 (1996)

    Article  ADS  Google Scholar 

  40. Islam, R., Abbas, T., Ikram, M.: Biasing a coin after the toss: asymmetric delayed choice quantum eraser via Bragg regime cavity QED. Laser Phys. Lett. 12, 015203 (2015)

    Article  ADS  Google Scholar 

  41. Islam, R., Ikram, M., Imran, M., Ge, G.: Entanglement and the paradox of untying the defining feature from a quantum entity. Phys. Rev. A 100, 052122 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. Qurban, M., Abbas, T., Islam, R., Ikram, M.: Quantum teleportation of high-dimensional atomic Momenta State. Int. J. Theor. Phys. 55, 2977–2988 (2016)

    Article  MATH  Google Scholar 

  43. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Teleportation of an atomic momentum state. Phys. Rev. A 67, 042318 (2003)

    Article  ADS  Google Scholar 

  44. Ball, P.: Physics: quantum all the way. Nature 453(7191), 22–25 (2008)

    Article  Google Scholar 

  45. Meystre, P.: Atom optics. AIP Press Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  46. Cook, R.J., Bernhardt, A.F.: Deflection of atoms by a resonant standing electromagnetic wave. Phys. Rev. A 18, 2533–2537 (1978)

    Article  ADS  Google Scholar 

  47. Bernhardt, A.F., Shore, B.W.: Coherent atomic deflection by resonant standing waves. Phys. Rev. A 23, 1290–1301 (1981)

    Article  ADS  Google Scholar 

  48. Islam, R., Ikram, M., Saif, F.: Engineering maximally entangledN-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B: At. Mol. Opt. Phys. 40, 1359–1368 (2007)

    Article  ADS  Google Scholar 

  49. Islam, R., Khosa, A.H., Saif, F.: Generation of Bell, NOON and W states via atom interferometry. J. Phys. B: At. Mol. Opt. Phys. 41, 035505 (2008)

    Article  ADS  Google Scholar 

  50. Marte, M., Stenholm, S.: Multiphoton resonances in atomic bragg scattering. Appl. Phys. B 54, 443–450 (1992)

    Article  ADS  Google Scholar 

  51. Khan, A.A., Zubairy, M.S.: Quantum non-demolition measurement of Fock states via atomic scattering in Bragg regime. Phys. Lett. A 254, 301–306 (1999)

    Article  ADS  Google Scholar 

  52. Khosa, A.H., Ikram, M., Zubairy, M.S.: Measurement of entangled states via atomic beam deflection in Bragg’s regime. Phys. Rev. A 70, 052312 (2004)

    Article  ADS  Google Scholar 

  53. Giltner, D.M., McGowan, R.W., Lee, S.A.: Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. Phys. Rev. A 52, 3966–3972 (1995)

    Article  ADS  Google Scholar 

  54. Ikram, M., Imran, M., Abbas, T., Islam, R.: Wheeler’s delayed-choice experiment: a proposal for the Bragg-regime cavity-QED implementation. Phys. Rev. A 91, 043636 (2015)

    Article  ADS  Google Scholar 

  55. Lawall, J., Prentiss, M.: Demonstration of a novel atomic beam splitter. Phys. Rev. Lett. 72, 993–996 (1994)

    Article  ADS  Google Scholar 

  56. Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  57. Haroche, S., Raimond, J.M.: Exploring the quantum. Cavities and Photons. Oxford University Press Atoms, Oxford (2006)

    Book  MATH  Google Scholar 

  58. Haroche, S., Raimond, J.M.: From cavity to circuit quantum electrodynamics. Nat. Phys. 16(3), 243–246 (2020)

    Article  Google Scholar 

  59. Cortinas, R.G., Favier, M., Ravon, B., Mehaignerie, P., Machu, Y., Raimond, J.M., Sayrin, C., Brune, M.: Laser trapping of circular rydberg atoms. Phys. Rev. Lett. 124, 123201 (2020)

    Article  ADS  Google Scholar 

  60. Meystre, P.: Quantum optics: taming the quantum. Springer, Switzerland (2021)

    Book  MATH  Google Scholar 

  61. Rempe, G., Schmidt-Kaler, F., Walther, H.: Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 67, 2783–2786 (1990)

    Article  ADS  Google Scholar 

  62. Guerry, C.C.: Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state. Phys. Rev. A 54, R2529–R2532 (1996)

    Article  ADS  Google Scholar 

  63. Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    Article  ADS  Google Scholar 

  64. Durr, S., Kunze, S., Rempe, G.: Pendellosung oscillations in second-order Bragg scattering of atoms from a standing light wave. Quantum Semiclassical Opt. 8, 531–539 (1996)

    Article  ADS  Google Scholar 

  65. Vernooy, D.W., Ilchenko, V.S., Mabuchi, H., Streed, Kimble, H.J.: High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247 (1998)

    Article  ADS  Google Scholar 

  66. Durr, S., Nonn, T., Rempe, G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395, 33–37 (1998)

    Article  ADS  Google Scholar 

  67. Abbas, T., Islam, R., Ikram, M.: State engineering and information distribution over quantum networks via distant manipulations based on quantized momenta of neutral atoms. J. Phys. B: At. Mol. Opt. Phys. 47, 245502 (2014)

    Article  ADS  Google Scholar 

  68. Chiow, S.W., Kovachy, T., Chien, H.C., Kasevich, M.A.: 102\(\hbar \)k large area atom interferometers. Phys. Rev. Lett. 107, 130403 (2014)

    Article  Google Scholar 

  69. Plotkin-Swing, B., Gochnauer, D., McAlpine, K.E., Cooper, E.S., Jamison, A.O., Gupta, S.: Three-path atom interferometry with large momentum separation. Phys. Rev. Lett. 121, 133201 (2018)

    Article  ADS  Google Scholar 

  70. Khakimov, R.I., Dall, R.G., Truscott, A.G.: Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 11, 539–542 (2015)

    Article  Google Scholar 

  71. Munstermann, P., Fischer, T., Pinkse, P.W.H., Rempe, G.: Single slow atoms from an atomic fountain observed in a high-finesse optical cavity. Opt. Commun. 159, 63–67 (1999)

    Article  ADS  Google Scholar 

  72. Munstermann, P., Fischer, T., Maunz, P., Pinkse, P.W.H., Rempe, G.: Dynamics of single-atom motion observed in a high-finesse cavity. Phys. Rev. Lett. 82, 3791–3797 (1999)

    Article  ADS  Google Scholar 

  73. Puppe, T., Maunz, P., Fischer, T., Pinkse, P.W.H., Rempe, G.: Single-atom trajectories in higher-order transverse modes of a high-finesse optical cavity. Phys. Scr. T112, 7 (2004)

    Article  ADS  Google Scholar 

  74. Hood, C.J., Kimble, H.J., Ye, J.: Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A 64, 033804 (2001)

    Article  ADS  Google Scholar 

  75. Kokorowski, D.A., Cronin, A.D., Roberts, T.D., Pritchard, D.E.: From single- to multiple-photon decoherence in an atom interferometer. Phys. Rev. Lett. 86, 2191–2195 (2001)

    Article  ADS  Google Scholar 

  76. Azuma, K., Tamaki, K., Lo, H.K.: All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015)

    Article  ADS  Google Scholar 

  77. Wallucks, A., Marinkovic, I., Hensen, B., Stockill, R., Groblacher, S.: A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L., Rameez-ul-Islam, Ikram, M. et al. Teleportation of atomic external states on the internal degrees of freedom. Quantum Inf Process 21, 55 (2022). https://doi.org/10.1007/s11128-021-03400-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03400-w

Keywords

Navigation