Skip to main content
Log in

Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum optomechanical system serves as an interface for coupling between photons and phonons via radiation pressure. We theoretically investigate the optical response of a hybrid optomechanical system that contains a single undoped semiconductor quantum well inside a cavity as well as a thin dielectric movable membrane in the middle, quadratically coupled to the cavity photons. We find that in the presence of both quadratic optomechanical coupling and exciton–cavity field coupling, two additional absorption dips appear in the output field spectrum of the probe field as compared to a standard quadratic optomechanical system which gives only two-phonon optomechanical induced transparency and optomechanical induced absorption phenomena with probe field detuning. This is due to the formation of the dressed state mediated by the single-photon state and the exciton mode. Furthermore, we have shown that the optical transmission of the probe field at these two absorption dips can be controlled by a number of parameters present in the system like exciton–cavity field coupling strength, decay rate of exciton as well as the mean number of thermal phonons- in the environment. We also explore the possibility of slow light in this absorption regime due to exciton–photon coupling. Our study shall provide a method to control the propagation of light in quadratic hybrid optomechanical system containing semiconductor nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Backaction at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  2. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  3. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  4. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  5. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  6. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  7. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  8. Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  9. Harris, S.E., Field, J.E., Imamoglu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  10. Boller, K.J., Imamoglu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  11. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  12. Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)

    Article  ADS  Google Scholar 

  13. Massel, F., Heikkilä, T., Pirkkalainen, J.-M., Cho, S., Saloniemi, H., Hakonen, P., Sillanpää, M.A.: Microwave amplification with nanomechanical resonators. Nature 480, 351 (2011)

    Article  ADS  Google Scholar 

  14. Toth, L.D., Bernier, N.R., Nunnenkamp, A., Feofanov, A.K., Kippenberg, T.J.: A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787 (2017)

    Article  Google Scholar 

  15. Xiong, H., Si, L.G., Zheng, A.-S., Yang, X., Wu, Y.: Higher order sidebands in optomechanically induced transparency. Phys. Rev. A 86, 013815 (2012)

    Article  ADS  Google Scholar 

  16. Xiong, H., Si, L.G., Lu, X.-Y., Wu, Y.: Optomechanically induced sum sideband generation. Opt. Express 24, 5773 (2016)

    Article  ADS  Google Scholar 

  17. Xiong, H., Fan, Y.W., Yang, X., Wu, Y.: Radiation pressure induced difference-sideband generation beyond linearised description. Appl. Phys. Lett. 109, 061108 (2016)

    Article  ADS  Google Scholar 

  18. Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)

    Article  ADS  Google Scholar 

  19. Lemonde, M.A., Didier, N., Clerk, A.A.: Nonlinear interaction effects in a strongly driven optomechanical cavity. Phys. Rev. Lett. 111, 053602 (2013)

    Article  ADS  Google Scholar 

  20. Borkje, K., Nunnenkamp, A., Teufel, J.D., Girvin, S.M.: Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett. 111, 053603 (2013)

    Article  ADS  Google Scholar 

  21. Arcizet, O., Cohadon, P.F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  22. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  23. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  24. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  25. Palomaki, T., Teufel, J., Simmonds, R., Lehnert, K.: Entangling mechanical motion with microwave fields. Science 342, 710 (2013)

    Article  ADS  Google Scholar 

  26. Asjad, M., Vitali, D.: Reservoir engineering of a mechanical resonator: generating a macroscopic superposition state and monitoring its decoherence. J. Phys. B Atomic Mol. Opt. Phys. 47, 045502 (2013)

    Article  ADS  Google Scholar 

  27. Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  28. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, S.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  29. Sankey, J.C., Yang, C., Zwickl, B.M., Jayich, A.M., Harris, J.G.E.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010)

    Article  Google Scholar 

  30. Paraiso, T.K., Kalaee, M., Zang, L., Pfeifer, H., Marquardt, F., Painter, O.: Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 5, 041024 (2015)

    Google Scholar 

  31. Murch, K.W., Moore, K.L., Gupta, S., Stamper-Kurn, D.M.: Observation of quantum-measurement backaction with an ultracold atomic gas. Nat. Phys. 4, 561 (2008)

    Article  Google Scholar 

  32. Purdy, T.P., Brooks, D., Botter, T., Brahms, N., Ma, Z.-Y., Stamper-Kurn, D.M.: Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010)

    Article  ADS  Google Scholar 

  33. Brawley, G.A., Vanner, M.R., Larsen, P.E., Schmid, S., Boisen, A., Bowen, W.P.: Nonlinear optomechanical measurement of mechanical motion. Nat. Commun. 7, 10988 (2016)

    Article  ADS  Google Scholar 

  34. Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G.. Di., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  35. Zhan, X.-G., Si, L.-G., Zheng, A.-S., Yang, X.: Tunable slow light in a quadratically coupled optomechanical system. J. Phys. B 46, 025501 (2013)

    Article  ADS  Google Scholar 

  36. Hauer, B.D., Metelmann, A., Davis, J.P.: Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities. Phys. Rev. A 98, 043804 (2018)

    Article  ADS  Google Scholar 

  37. Clerk, A.A., Marquardt, F., Harris, J.G.E.: Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104, 213603 (2010)

    Article  ADS  Google Scholar 

  38. Liao, J.-Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    Article  ADS  Google Scholar 

  39. Xie, H., Liao, C.-G., Shang, X., Ye, M.-Y., Lin, X.-M.: Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A 96, 013861 (2017)

    Article  ADS  Google Scholar 

  40. Xu, X., Shi, H., Chen, A., Liu, Y.: Cross-correlation between photons and phonons in quadratically coupled optomechanical systems. Phys. Rev. A 98, 013821 (2018)

    Article  ADS  Google Scholar 

  41. Bhattacharya, M., Meystre, P.: Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007)

    Article  ADS  Google Scholar 

  42. Asjad, M., Agarwal, G.S., Kim, M.S., Tombesi, P., Giuseppe, G.D., Vitali, D.: Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A 89, 023849 (2014)

    Article  ADS  Google Scholar 

  43. Nunnenkamp, A., Borkje, K., Harris, J.G.E., Girvin, S.M.: Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A 82, 021806(R) (2010)

    Article  ADS  Google Scholar 

  44. Jacobs, K., Tian, L., Finn, J.: Engineering superposition states and tailored probes for nanoresonators via open-loop control. Phys. Rev. Lett. 102, 057208 (2009)

    Article  ADS  Google Scholar 

  45. Shi, H., Bhattacharya, M.: Quantum mechanical study of a generic quadratically coupled optomechanical system. Phys. Rev. A 87, 043829 (2013)

    Article  ADS  Google Scholar 

  46. Abdi, M., Degenfeld-Schonburg, P., Sameti, M., Navarrete-Benlloch, C., Hartmann, M.J.: Dissipative optomechanical preparation of macroscopic quantum superposition states. Phys. Rev. Lett. 116, 233604 (2016)

    Article  ADS  Google Scholar 

  47. Zhang, J., Li, M., Chen, A.: Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers. Phys. Rev. A 99, 013843 (2019)

    Article  ADS  Google Scholar 

  48. Si, L.-G., Xiong, H., Zubairy, M.S., Wu, Y.: Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system. Phys. Rev. A 95, 033803 (2017)

    Article  ADS  Google Scholar 

  49. Huang, S., Chen, A.: Fano resonance and amplification in a quadratically coupled optomechanical system with a Kerr medium. Phys. Rev. A 101, 023841 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  50. Jiang, C., Cui, Y., Zhai, Z., Yu, H., Li, X., Chen, G.: Tunable transparency and amplification in a hybrid optomechanical system with quadratic coupling. J. Phys. B At. Mol. Opt. Phys. 52, 215402 (2019)

    Article  ADS  Google Scholar 

  51. Kundu, A., Chao, J., Peng, J.: Optical response of a dual membrane active-passive optomechanical cavity. Ann. Phys. 429, 168465 (2021)

    Article  MathSciNet  Google Scholar 

  52. Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J., Painter, O.: Optomechanical crystals. Nature 462, 78 (2009)

    Article  ADS  Google Scholar 

  53. Safavi-Naeini, A.H., Hill, J.T., Meenehan, S., Chan, J., Painter, O.: Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014)

    Article  ADS  Google Scholar 

  54. Heinrich, G., Ludwig, M., Qian, J., Kubala, B., Marquardt, F.: Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)

    Article  ADS  Google Scholar 

  55. Xuereb, A., Genes, C., Pupillo, G., Paternostro, M., Dantan, A.: Reconfigurable long-range phonon dynamics in optomechanical arrays. Phys. Rev. Lett. 112, 133604 (2014)

    Article  ADS  Google Scholar 

  56. Tomadin, A., Diehl, S., Lukin, M.D., Rabl, P., Zoller, P.: Reservoir engineering and dynamical phase transitions in optomechanical arrays. Phys. Rev. A 86, 033821 (2012)

    Article  ADS  Google Scholar 

  57. Xiong, H., Wu, Y.: Optomechanical Akhmediev Breathers. Laser Photonics Rev. 12, 1700305 (2018)

    Article  ADS  Google Scholar 

  58. Ian, H., Gong, Z.R., Liu, Yu.-xi, Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008)

    Article  ADS  Google Scholar 

  59. Hunger, D., Camerer, S., Korppi, M., Jockel, A., Hansch, T.W., Treutlein, P.: Coupling ultracold atoms to mechanical oscillators. C. R. Phys. 12, 871 (2011)

    Article  ADS  Google Scholar 

  60. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  61. Asjad, M.: Cavity optomechanics with a Bose-Einstein condensate: normal mode splitting. J. Mod. Opt. 59, 917 (2012)

    Article  ADS  Google Scholar 

  62. Asjad, M.: Electromagnetically-induced transparency in optomechanical systems with Bose-Einstein condensate. J. Russ. Laser Res. 34, 159 (2013)

    Article  Google Scholar 

  63. Asjad, M.: Optomechanically dark state in hybrid BEC-optomechanical systems. J. Russ. Laser Res. 34, 278 (2013)

    Article  Google Scholar 

  64. Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014)

    Article  ADS  Google Scholar 

  65. Sete, E.A., Eleuch, H.: Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev. A 85, 043824 (2012)

    Article  ADS  Google Scholar 

  66. Jiang, C., Jiang, L., Yu, H., Cui, Y., Li, X., Chen, G.: Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 96, 053821 (2017)

    Article  ADS  Google Scholar 

  67. Chen, B., Jiang, C., Zhu, K.D.: Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A 83, 055803 (2011)

    Article  ADS  Google Scholar 

  68. Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)

    Article  ADS  Google Scholar 

  69. Yamamoto, Y.: For a single electron-hole pair in the Quantum Well (QW), its total Hamiltonian reduces to \(K_{e} + K_{h} + V_{eh}\), where \(K_{e}\) and \(K_{h}\) are kinetic energy terms and \(V_{eh}\) is the electron-hole coulomb interaction. Its eigenstates include bound states, the excitons, with a binding energy \(E_{B}\), and a Bohr radius \(a_{B}\). In the case of a few excitons, the total Hamiltonian can be diagonalized, apart from the terms of the order of \(\dfrac{a^{2}_{B}}{S}\), \(S\) being the sample surface. For the ultralow density limit case \(n_{exc}a^{2}_{B}\ll 1\) (\(n_{exc}\) is the exciton density), the system of excitons can be treated as an ideal noninteracting Bose gas in our model Hamiltonian. We consider here an ultralow density limit where exciton-exciton interaction can be also neglected at all, and it is a good approximation to consider a single exciton-cavity mode interaction that can be treated linearly, while the density-dependent relaxation effects can be neglected as shown in Reference [66]. In the case of (moderately) low density limit \(\left(n_{exc}a^{2}_{B}\sim 1\right)\) a simple two-body interaction term for exciton-exciton interaction term can be also added into the system Hamiltonian given in Phys. Rev. A 84, 053817 (2011)

  70. Jayich, A.M., Sankey, J.C., Zwickl, B.M., Yang, C., Thompson, J.D., Girvin, S.M., Clerk, A.A., Marquardt, F., Harris, J.G.E.: Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008)

    Article  ADS  Google Scholar 

  71. Karuza, M., Galassi, M., Biancofiore, C., Molinelli, C., Natali, R., Tombesi, P., Di Di Giuseppe, G., Vitali, D.: Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. J. Opt. 15, 025704 (2013)

    Article  ADS  Google Scholar 

  72. Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  73. Milonni, P.W.: Fast Light, Slow Light and Left handed Light. Institute of Physics, Bristol (2005)

    Google Scholar 

  74. Clader, B.D., Eberly, J.H.: Theoretical study of fast light with short sech pulses in coherent gain media. J. Opt. Soc. Am. B. 24, 916 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Raymond Ooi thanks and acknowledges the Ministry of Higher Education, Malaysia, for Long-Term Research Grant Scheme, LRGS/1/2020/UM/01/5/1. S.K. Singh is sincerely grateful to Dr. Jia-Xin Peng for his insightful discussion related to this article. M. Asjad is supported by an Abu Dhabi Award for Research Excellence under the ASPIRE Award for Research Excellence under the Advanced Technology Research Council (ASPIRE) (AARE19-062) 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Simplification for Equation (6):

$$\begin{aligned} i\varOmega c_{+}= & {} -\left( \kappa _{c}/2 +i\varDelta ^{\prime }_{1}\right) c_{+} - ig_{om}c_{s}Q_{+}-iga_{+}, \end{aligned}$$
(A-1)
$$\begin{aligned} i\varOmega c_{-}= & {} \left( \kappa _{c}/2 +i\varDelta ^{\prime }_{1}\right) c_{-} + ig_{om}c_{s}Q_{-} + iga_{-}-\varepsilon _{P}, \end{aligned}$$
(A-2)
$$\begin{aligned} i\varOmega a_{+}= & {} -\left( \kappa _{a}/2 +i\varDelta _{a}\right) a_{+}- igc_{+}, \end{aligned}$$
(A-3)
$$\begin{aligned} a_{+}= & {} \dfrac{-igc_{+}}{\left[ \left( \kappa _{a}/2 +i\varDelta _{a}\right) +i\varOmega \right] }, \end{aligned}$$
(A-4)
$$\begin{aligned} i\varOmega a_{-}= & {} \left( \kappa _{a}/2 +i\varDelta _{a}\right) a_{-} + igc_{-}, \end{aligned}$$
(A-5)
$$\begin{aligned} a_{-}= & {} \dfrac{igc_{-}}{\left[ i\varOmega -\left( \kappa _{a}/2 +i\varDelta _{a}\right) \right] }, \end{aligned}$$
(A-6)
$$\begin{aligned} i\varOmega P_{+}= & {} -\left( \omega _{m} + 2 g_{om}\vert c_{s}\vert ^{2}\right) X_{+} - 2\gamma _{m}P_{+}, \end{aligned}$$
(A-7)
$$\begin{aligned} i\varOmega P_{-}= & {} \left( \omega _{m} + 2 g_{om}\vert c_{s}\vert ^{2}\right) X_{-} + 2\gamma _{m}P_{-}, \end{aligned}$$
(A-8)
$$\begin{aligned} i\varOmega Q_{+}= & {} \omega _{m}X_{+}, \end{aligned}$$
(A-9)
$$\begin{aligned} i\varOmega Q_{-}= & {} -\omega _{m}X_{-}, \end{aligned}$$
(A-10)
$$\begin{aligned} i\varOmega X_{+}= & {} 2\omega _{m}P_{+}-2\left( \omega _{m} + 2g_{om}\vert c_{s}\vert ^{2}\right) Q_{+}-4 g_{om}Q_{s}c_{+}\left( c^{\star }_{s} + c_{s}\right) -\gamma _{m}X_{+}, \end{aligned}$$
(A-11)
$$\begin{aligned} i\varOmega X_{-}= & {} -2\omega _{m}P_{-} + 2\left( \omega _{m} + 2g_{om}\vert c_{s}\vert ^{2}\right) Q_{-} + 4g_{om}Q_{s}c_{-}\left( c^{\star }_{s} + c_{s}\right) + \gamma _{m}X_{-}.\nonumber \\ \end{aligned}$$
(A-12)

B Hamiltonian in terms of dressed state operators:

Our system Hamiltonian given in Eq. (1) can be also expressed in terms of dressed states operators as follows:

$$\begin{aligned} {\hat{H}}= & {} \hbar \varDelta _{+}{\hat{d}}_{+}^{\dagger }{\hat{d}}_{+} + \hbar \varDelta _{-}{\hat{d}}_{-}^{\dagger }{\hat{d}}_{-} + \dfrac{\hbar \omega _m}{2}({\hat{p}}^2+{\hat{q}}^2)+\hbar \dfrac{g_{om}}{2}({\hat{d}}_{+}^{\dagger }{\hat{d}}_{+} + {\hat{d}}_{-}^{\dagger }{\hat{d}}_{-}){\hat{q}}^2 \nonumber \\&+ \hbar \dfrac{g_{om}}{2}({\hat{d}}_{+}^{\dagger }{\hat{d}}_{-}+ {\hat{d}}_{+}{\hat{d}}^{\dagger }_{-}){\hat{q}}^2 + i\hbar \dfrac{\varepsilon _{L}}{\sqrt{2}}\left( {\hat{d}}_{+}^{\dagger }-{\hat{d}}_{+}\right) + i\hbar \dfrac{\varepsilon _{L}}{\sqrt{2}}\left( {\hat{d}}_{-}^{\dagger }-{\hat{d}}_{-}\right) \nonumber \\&+ i\hbar \dfrac{\varepsilon _{p}}{\sqrt{2}}\left( {\hat{d}}_{+}^{\dagger }e^{-i\varOmega t}-{\hat{d}}_{+}e^{i\varOmega t}\right) + i\hbar \dfrac{\varepsilon _{p}}{\sqrt{2}}\left( {\hat{d}}_{-}^{\dagger }e^{-i\varOmega t}-{\hat{d}}_{-}e^{i\varOmega t}\right) , \end{aligned}$$
(B-1)

where \(\varDelta _{\pm } = \varDelta _{c} \pm g = \varDelta _{a} \pm g\). The first two terms in the first line of Eq. (B1) represent the free evolution Hamiltonian of the two dressed states formed by the single-photon state and the exciton mode, i.e., \({\hat{d}}_{\pm } = {\hat{c}} \pm {\hat{a}}\) and the third term is the free evolution Hamiltonian for the coupled optomechanical membrane. These two dressed states interact quadratically with the membrane through the fourth terms given in first line which is responsible for the OMIT (OMIA) phenomena. This coupled membrane can also scatter photons in between these two dressed states \({\hat{d}}_{+}\) and \({\hat{d}}_{-}\) which is given by last or fifth term in the first line of Eq. (B1). All the terms in second line of Eq.(B1) represent driven terms for these two dressed states \({\hat{d}}_{+}\) and \({\hat{d}}_{-}\), with driving amplitudes \(\dfrac{\varepsilon _{L}}{\sqrt{2}}\) and \(\dfrac{\varepsilon _{p}}{\sqrt{2}}\), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Asjad, M. & Ooi, C.H.R. Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf Process 21, 47 (2022). https://doi.org/10.1007/s11128-021-03401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03401-9

Keywords

Navigation