Skip to main content
Log in

Linear codes with arbitrary dimensional hull and their applications to EAQECCs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Euclidean hull dimension of a linear code is an important quantity to determine the parameters of an entanglement-assisted quantum error-correcting code (EAQECC) if the Euclidean construction is applied. In this paper, we study the Euclidean hull of a linear code by means of orthogonal matrices. We provide some methods to construct linear codes over \({\mathbb {F}}_{p^m}\) with hull of arbitrary dimensions. With existence of self-dual bases of \({\mathbb {F}}_{p^m}\) over \({\mathbb {F}}_p\), we determine a Gray map from \({\mathbb {F}}_{p^m}\) to \({\mathbb {F}}_p^m\), and from a given linear code over \({\mathbb {F}}_{p^m}\) with one-dimensional hull, we construct, using such a Gray map, a linear code over \({\mathbb {F}}_p\) with m-dimensional hull for all m when p is even and for all m odd when p is odd. Comparisons with classical constructions are made, and some good EAQECCs over \({\mathbb {F}}_q, q=2,3,4,5,9,13,17,49\) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J.: Handbook of Magma Functions. Sydney (1995)

  3. Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)

    Article  ADS  Google Scholar 

  4. Blackmore, T., Norton, G.H.: Matrix-product codes over \({\mathbb{F}}_q\). Appl. Algebra Eng. Commun. Comput. 12, 477–500 (2001)

    Article  Google Scholar 

  5. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)

    Article  MathSciNet  Google Scholar 

  6. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1):131–150 (2016)

  8. Carlet, C., Guilley, S.: Statistical properties of side-channel and fault injection attacks using coding theory. Cryptogr. Commun. 10(5), 909–933 (2018)

    Article  MathSciNet  Google Scholar 

  9. Carlet, C., Li, C., Mesnager, S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87, 3063–3075 (2019)

    Article  MathSciNet  Google Scholar 

  10. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \({\mathbb{F}}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)

    Article  Google Scholar 

  11. Database of best known linear codes. http://www.codetables.de. Accessed 17 Sept 2021

  12. Fan, Y., Ling, S., Liu, H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes Cryptogr. 71, 201–227 (2014)

    Article  MathSciNet  Google Scholar 

  13. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18, 116 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  15. Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(\ell \)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2020)

    Article  MathSciNet  Google Scholar 

  16. Lai, C.Y., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)

    Article  MathSciNet  Google Scholar 

  17. Lai, C.-Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A Gen. Phys. 88, 012320 (2013)

    Article  ADS  Google Scholar 

  18. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496–511 (1982)

    Article  MathSciNet  Google Scholar 

  19. Leon, J.: Permutation group algorithms based on partition, I: theory and algorithms. J. Symb. Comput. 12, 533–583 (1991)

    Article  MathSciNet  Google Scholar 

  20. Li, C., Zeng, P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Massey, J.: Linear codes with complementary duals. Discrete Math. 106(107), 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  23. Qian, L., Cao, X., Mesnager, S.: Linear codes with one-dimensional hull associated with Gaussian sums. Cryptogr. Commun. 13, 225–243 (2021)

    Article  MathSciNet  Google Scholar 

  24. Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77, 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  25. Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  26. Seroussi, G., Lempel, A.: Factorization of symmetric matrices and trace-orthogonal bases in finite fields. SIAM J. Comput. 9(4), 758–767 (1980)

    Article  MathSciNet  Google Scholar 

  27. Shi, M., Sok, L., Solé, P., Çalkavur, S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sok, L.: On Euclidean self-dual codes and isometry codes. Appl. Algebra Eng. Commun. Comput. (2020). https://doi.org/10.1007/s00200-020-00434-y

    Article  MATH  Google Scholar 

  29. Sok, L.: MDS linear codes with one dimensional hull. arXiv:2012.11247

  30. L. Sok: On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs. arXiv:abs/2101.06461

Download references

Acknowledgements

We would like to thank the anonymous referees for their careful reading, constructive comments, and helpful suggestions that have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research work is supported by Anhui Provincial Natural Science Foundation with Grant Number 1908085MA04.

Appendix

Appendix

In the following, we provide some generator matrices of 1-dim hull \([13,4,5]_2\) code, 2-dim hull \([20,10,5]_2\) code, 1-dim hull \([20,15,3]_2\) code, 4-dim hull \([14,10,3]_3\) code, 4-dim hull \([16,12,3]_3\) code, 6-dim hull \([20,14,4]_3\) code, 4-dim hull \([20,16,3]_3\) code, 4-dim hull \([22,18,3]_3\) code, 0-dim hull \([15,9,5]_5\) code, 0-dim hull \([12,8,4]_{13}\) code, 1-dim hull \([18,9,6]_5\) code, and 1-dim hull \([18,9,8]_9\) code. The generator matrices over \({\mathbb {F}}_q\) are expressed in the form \((I|A_q)\), where the identity matrix is omitted.

$$\begin{aligned} \left( \begin{array}{cccccccccc} 0&{}1&{}0&{}0&{}1&{}1&{}1&{}0&{}1\\ 1&{}1&{}0&{}0&{}1&{}0&{}1&{}0&{}0\\ 0&{}1&{}1&{}0&{}0&{}1&{}1&{}0&{}0\\ 0&{}0&{}1&{}1&{}1&{}1&{}0&{}0&{}1\\ \end{array} \right) _2, \left( \begin{array}{cccccccccc} 1&{}1&{}1&{}1&{}1&{}1&{}0&{}1&{}1&{}0\\ 1&{}1&{}1&{}0&{}1&{}0&{}0&{}1&{}0&{}0\\ 0&{}1&{}0&{}1&{}0&{}1&{}0&{}1&{}0&{}1\\ 0&{}0&{}1&{}1&{}1&{}1&{}0&{}0&{}0&{}0\\ 0&{}1&{}1&{}0&{}1&{}0&{}0&{}0&{}1&{}0\\ 0&{}1&{}1&{}1&{}1&{}0&{}1&{}0&{}0&{}1\\ 0&{}1&{}1&{}1&{}0&{}1&{}1&{}1&{}1&{}0\\ 1&{}1&{}1&{}1&{}1&{}1&{}1&{}0&{}1&{}1\\ 0&{}1&{}0&{}0&{}0&{}1&{}0&{}0&{}1&{}1\\ 0&{}0&{}0&{}0&{}0&{}1&{}1&{}1&{}1&{}0\\ \end{array} \right) _2, \left( \begin{array}{cccccccccc} 1&{}0&{}0&{}1&{}0\\ 1&{}1&{}0&{}1&{}0\\ 1&{}0&{}0&{}0&{}1\\ 0&{}1&{}1&{}1&{}1\\ 0&{}1&{}0&{}0&{}1\\ 0&{}0&{}0&{}1&{}1\\ 0&{}1&{}1&{}1&{}0\\ 1&{}1&{}0&{}0&{}1\\ 1&{}1&{}1&{}0&{}0\\ 0&{}1&{}0&{}1&{}0\\ 1&{}1&{}1&{}1&{}0\\ 1&{}0&{}1&{}1&{}1\\ 1&{}0&{}1&{}0&{}0\\ 1&{}1&{}0&{}1&{}1\\ 1&{}0&{}0&{}1&{}1\\ \end{array} \right) _2, \left( \begin{array}{cccccccccc} 2&{}0&{}1&{}1\\ 2&{}2&{}2&{}1\\ 2&{}2&{}0&{}2\\ 0&{}1&{}2&{}1\\ 2&{}0&{}2&{}0\\ 1&{}2&{}1&{}1\\ 1&{}2&{}2&{}0\\ 2&{}0&{}0&{}1\\ 1&{}0&{}2&{}1\\ 0&{}0&{}1&{}1\\ \end{array} \right) _3, \left( \begin{array}{cccccccccc} 0&{}0&{}1&{}1\\ 2&{}2&{}0&{}0\\ 1&{}2&{}2&{}0\\ 1&{}1&{}0&{}1\\ 1&{}2&{}2&{}2\\ 0&{}2&{}1&{}1\\ 2&{}1&{}0&{}2\\ 0&{}0&{}2&{}1\\ 1&{}0&{}1&{}1\\ 2&{}2&{}2&{}0\\ 1&{}0&{}0&{}1\\ 0&{}1&{}1&{}0\\ \end{array} \right) _3, \end{aligned}$$
$$\begin{aligned} \left( \begin{array}{cccccccccc} 1&{}1&{}0&{}0&{}0&{}2\\ 2&{}2&{}2&{}1&{}0&{}2\\ 1&{}2&{}0&{}2&{}2&{}0\\ 1&{}1&{}2&{}2&{}2&{}0\\ 1&{}2&{}1&{}2&{}0&{}0\\ 1&{}2&{}1&{}1&{}1&{}2\\ 0&{}1&{}0&{}2&{}0&{}2\\ 1&{}0&{}1&{}2&{}1&{}2\\ 0&{}2&{}1&{}0&{}0&{}2\\ 1&{}0&{}0&{}1&{}0&{}2\\ 0&{}2&{}2&{}2&{}2&{}2\\ 0&{}1&{}2&{}0&{}1&{}2\\ 0&{}2&{}0&{}2&{}1&{}1\\ 0&{}0&{}0&{}2&{}2&{}2\\ \end{array} \right) _3, \left( \begin{array}{cccccccccc} 1&{}1&{}1&{}2\\ 1&{}2&{}1&{}2\\ 2&{}2&{}0&{}2\\ 2&{}1&{}1&{}1\\ 2&{}0&{}2&{}2\\ 1&{}0&{}0&{}2\\ 2&{}1&{}1&{}2\\ 1&{}2&{}0&{}0\\ 0&{}1&{}1&{}2\\ 2&{}0&{}1&{}1\\ 1&{}2&{}0&{}2\\ 1&{}0&{}2&{}1\\ 1&{}2&{}1&{}1\\ 1&{}0&{}2&{}0\\ 2&{}2&{}2&{}2\\ 0&{}1&{}0&{}2\\ \end{array} \right) _3, \left( \begin{array}{cccccccccc} 0&{}1&{}1&{}0\\ 1&{}2&{}0&{}0\\ 1&{}1&{}2&{}2\\ 0&{}2&{}1&{}2\\ 1&{}0&{}1&{}0\\ 2&{}1&{}2&{}0\\ 1&{}0&{}0&{}2\\ 1&{}1&{}1&{}0\\ 2&{}2&{}2&{}2\\ 1&{}0&{}2&{}1\\ 1&{}1&{}0&{}0\\ 0&{}1&{}0&{}2\\ 1&{}1&{}2&{}0\\ 1&{}0&{}1&{}1\\ 1&{}2&{}1&{}1\\ 0&{}1&{}2&{}2\\ 2&{}1&{}2&{}1\\ 2&{}1&{}1&{}1\\ \end{array} \right) _3, \left( \begin{array}{cccccccccc} 1&{}3&{}2&{}2&{}0&{}1\\ 1&{}1&{}2&{}1&{}4&{}2\\ 3&{}1&{}0&{}1&{}2&{}1\\ 3&{}3&{}1&{}4&{}0&{}2\\ 1&{}1&{}3&{}3&{}1&{}0\\ 3&{}4&{}3&{}1&{}3&{}4\\ 1&{}4&{}1&{}3&{}0&{}2\\ 3&{}0&{}3&{}2&{}1&{}0\\ 0&{}3&{}2&{}0&{}2&{}1\\ \end{array} \right) _5, \left( \begin{array}{cccccccccc} 9&{}7&{}4&{}2\\ 2&{}10&{}7&{}10\\ 11&{}6&{}5&{}11\\ 4&{}5&{}11&{}8\\ 5&{}11&{}12&{}6\\ 6&{}7&{}4&{}5\\ 11&{}5&{}9&{}5\\ 5&{}1&{}3&{}2\\ \end{array} \right) _{13} \end{aligned}$$
$$\begin{aligned} \left( \begin{array}{cccccccccc} 1&{}1&{}1&{}1&{}3&{}3&{}4&{}3&{}2\\ 0&{}4&{}0&{}3&{}1&{}0&{}3&{}0&{}4\\ 3&{}4&{}3&{}1&{}0&{}0&{}4&{}2&{}1\\ 3&{}3&{}4&{}3&{}4&{}4&{}1&{}1&{}3\\ 2&{}2&{}1&{}3&{}2&{}3&{}0&{}3&{}4\\ 2&{}4&{}0&{}4&{}4&{}0&{}3&{}3&{}1\\ 0&{}3&{}4&{}3&{}3&{}2&{}3&{}4&{}3\\ 2&{}3&{}3&{}4&{}4&{}2&{}0&{}3&{}3\\ 0&{}2&{}4&{}2&{}0&{}4&{}3&{}4&{}3\\ \end{array} \right) _{5}, \left( \begin{array}{cccccccccc} 0&{}0&{}w^7&{}w^6&{}2&{}1&{}w^5&{}w^7&{}w\\ 1&{}w^5&{}w^3&{}w^3&{}w^7&{}2&{}2&{}w^7&{}2\\ w^3&{}w^7&{}0&{}0&{}1&{}1&{}1&{}1&{}w^7\\ w^2&{}1&{}2&{}w^7&{}w^2&{}w^6&{}w^2&{}w^5&{}0\\ w^2&{}w^3&{}w^6&{}w^6&{}w^7&{}w^6&{}w^7&{}1&{}2\\ w&{}w^3&{}w^7&{}w^7&{}w^2&{}1&{}w^2&{}w^6&{}w^3\\ w^6&{}0&{}2&{}w^5&{}w^6&{}w^2&{}w^7&{}1&{}w^2\\ 1&{}w^5&{}w^5&{}w^7&{}w^2&{}w^7&{}2&{}w&{}w^3\\ 2&{}w^7&{}w^5&{}0&{}w^5&{}w^3&{}w^3&{}2&{}w\\ \end{array} \right) _{9} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sok, L., Qian, G. Linear codes with arbitrary dimensional hull and their applications to EAQECCs. Quantum Inf Process 21, 72 (2022). https://doi.org/10.1007/s11128-021-03407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03407-3

Keywords

Mathematics Subject Classification

Navigation