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Abstract Spatial search on graphs is one of the most important algorithmic
applications of quantum walks. To show that a quantum-walk-based search is
more efficient than a random-walk-based search is a difficult problem, which
has been addressed in several ways. Usually, graph symmetries aid in the cal-
culation of the algorithm’s computational complexity, and Johnson graphs are
an interesting class regarding symmetries because they are regular, Hamilton-
connected, vertex- and distance-transitive. In this work, we show that spa-
tial search on Johnson graphs by continuous-time quantum walk achieves the
Grover lower bound π

√
N/2 with success probability 1 asymptotically for every

fixed diameter, where N is the number of vertices. The proof is mathematically
rigorous and can be used for other graph classes.

Keywords Continuous-time quantum walk · Spatial quantum search ·
Johnson graph
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1 Introduction

The continuous-time quantum walk (CTQW) was introduced by Farhi and
Gutmann [1] as a quantum analogue of the continuous-time Markov process
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with the aim of building faster quantum algorithms based on decision trees. An
example of such algorithm was provided for the problem of evaluating NAND-
based Boolean formulas: if the NAND tree has N leaves, the best classical
algorithm runs in timeΩ(N0.753), and the quantum-walk-based algorithm runs
in time O(N0.5) [2]. Childs et al. [3] also presented an interesting example of
an exponential algorithmic speedup by using the CTQW to rapidly traverse a
graph.

Besides algorithmic applications, many other important results were ob-
tained. We highlight some of them. Konno [4,5] proved a weak limit theorem
for the CTQW on the line and trees, and showed that there is a striking con-
trast to the central limit theorem of symmetric classical random walks. Mülken
and Blumen [6] reviewed applications of CTQWs to transport in various sys-
tems, and recently Razzoli et al. [7] analytically determined subspaces of states
having maximum transport efficiency for many graph topologies. Benedetti et
al. [8] described CTQW on dynamical percolation graphs with the goal of an-
alyzing the effect of noise produced by randomly adding or removing graph
edges. Delvecchio et al. [9] analytically investigated the analogy between the
CTQW in one dimension and the evolution of the quantum kicked rotor at
quantum resonance conditions.

Benioff [10] originally proposed the quantum spatial search problem, which
aims to find a marked location using a quantum robot wandering aimlessly on a
graph endowed with the skill of checking whether a node is marked or not. The
continuous-time model proved useful to solve this problem on many graphs.
Childs and Goldstone [11] presented a framework using a Hamiltonian that
encodes the adjacency matrix and the information about the location of the
marked vertex. This framework has been used systematically in many papers;
we highlight some of them. Agliari et al. [12] studied the spatial search on
fractal structures and showed how the transition from the ground state of the
Hamiltonian to a state close to the marked state is accomplished by a CTQW.
Philipp et al. [13] analyzed spatial search on balanced trees, and showed that
the efficiency depends on whether the marked vertex is close to the root or the
leaves of the graph. Osada et al. [14] explored the spatial search on scale-free
networks and found that the efficiency is determined by the global structure
around the marked vertex. Recently, new experimental implementations of
quantum walk search were proposed in [15,16].

The Johnson graph J(n, k) has many interesting properties that help to
establish the efficiency of quantum-walk-based search. Johnson graphs are reg-
ular, vertex- and distance-transitive. The eigenvalues and eigenvectors of their
adjacency matrices are known and easy to handle. In fact, there are some
results in literature analyzing quantum walk search on a subclass of John-
son graphs. Wong [17] showed that J(n, 3) supports fast spatial search by
continuous-time quantum walk, and Xue et al. [18] also showed that J(n, 3)
supports fast spatial search using the scattering quantum walk, and they dis-
cussed the general case when k is arbitrary. The scattering quantum walk is a
discrete-time model equivalent to the coined model [19].
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In this work, we use the continuous-time model to analyze quantum-walk-
based search algorithms on the Johnson graph J(n, k) for arbitrary n and k.
We show that the optimal running time is π

√
N/2 and the success probability

is 1 asymptotically on J(n, k) for every fixed k, where N =
(

n
k

)

is the number of
vertices. We employ a fully rigorous analytic method, which can be borrowed
for other graph classes.

The outline of this paper is as follows. In Sec. 2, we lay out the mathemati-
cal framework that we use to prove the computational complexity of the search
algorithm. In Sec. 3, we show that the quantum-walk-based search achieves
the lower bound on Johnson graphs. In Sec. 4, we draw our conclusions.

2 Mathematical framework

Let J(n, k) be the Johnson graph, where the vertex set V = V (J(n, k)) is the
set of k-subsets of [n] = {1, 2, . . . , n}, and two vertices v, v′ ∈ V are adjacent
if and only if |v ∩ v′| = k− 1. Note that J(n, 1) is the complete graph Kn, and
that J(n, 2) is the triangular graph Tn, which is strongly regular. We associate
J(n, k) with a Hilbert space spanned by H = {|v〉 : |v〉 ∈ V }, as is usually
done in the definition of the continuous-time quantum walk [1].

Let w ∈ V be the marked vertex. We consider the Hamiltonian of the
form [11]

H = −γA− |w〉〈w|,

where A denotes the adjacency operator of J(n, k), and γ is a real and positive
parameter. The algorithm starts in the initial state |ψ(0)〉, which is the uniform
superposition of the computational basis

|s〉 := 1√
N

∑

v∈V

|v〉,

where N =
(

n
k

)

is the number of vertices of J(n, k), and the notation “:=” is
used to stress that we are defining a new symbol. The quantum state at time
t is therefore given by

|ψ(t)〉 = e−iHt|s〉.

2.1 Invariant subspace

From now on, we fix k. We will always assume that n > 2k, so that J(n, k) has
diameter k. Clearly, this assumption does not affect the asymptotic analysis
of the search algorithm when n→ ∞. Consider the following subsets of V

νℓ = {v ∈ V : |v ∩w| = k − ℓ},
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where 0 6 ℓ 6 k. Note that ν0 = {w}, and that |νℓ| =
(

k
ℓ

)(

n−k
ℓ

)

. Instead of
using the Hilbert space span{|v〉 : v ∈ V }, we will work with the invariant
subspace Hinv = span{|νℓ〉 : 0 6 ℓ 6 k}, where

|νℓ〉 =
1

√

|νℓ|
∑

v∈νℓ

|v〉,

for 0 6 ℓ 6 k.
Below we collect the necessary information regarding Johnson graphs [20,

21]. The adjacency operator A has exactly k+1 distinct eigenvalues λ0 > λ1 >
· · · > λk, where

λℓ = (k − ℓ)(n− k − ℓ)− ℓ, (1)

and the multiplicity of λℓ equals
(

n
ℓ

)

−
(

n
ℓ−1

)

(with the understanding that
(

n
−1

)

= 0). For 0 6 ℓ 6 k, let Pℓ denote the projector onto the eigenspace of A
in span{|v〉 : v ∈ V } for the eigenvalue λℓ. It is known that

‖Pℓ|w〉‖2 = 〈w|Pℓ|w〉 =
(

n
ℓ

)

−
(

n
ℓ−1

)

(

n
k

) =
k!(n− k)!(n− 2ℓ+ 1)

ℓ!(n− ℓ+ 1)!
. (2)

In particular, the vectors Pℓ|w〉 are nonzero, and hence Hinv has another or-
thonormal basis {|λℓ〉 : 0 6 ℓ 6 k} consisting of eigenvectors of A, where

|λℓ〉 =
1

‖Pℓ|w〉‖
Pℓ|w〉.

We will analyze the search algorithm using this basis. We note that this is
different from the basis used by Wong [17], who analyzed the case k = 3.

Observe that P0 = |s〉〈s|, from which it follows that

|λ0〉 = |s〉.

The matrix representation of A in this basis is

A = diag(λ0, λ1, . . . , λk). (3)

On the other hand, since

(

|w〉〈w|
)

|λℓ〉 = ‖Pℓ|w〉‖|w〉 = ‖Pℓ|w〉‖
k
∑

ℓ′=0

Pℓ′ |w〉

= ‖Pℓ|w〉‖
k
∑

ℓ′=0

‖Pℓ′ |w〉‖|λℓ′ 〉,

the matrix representation of |w〉〈w| in this basis is

|w〉〈w| =
(

‖Pℓ|w〉‖‖Pℓ′ |w〉‖
)k

ℓ,ℓ′=0
. (4)
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2.2 Degenerate perturbation theory

We apply the degenerate perturbation theory to the analysis of the search
algorithm [22,17]. In perturbation theory, eigenvalues and eigenvectors of an
analytic square matrix function are assumed to be again analytic functions.
However, this seems to be a subtle problem, particularly for degenerate eigen-
values, i.e., eigenvalues with multiplicity at least two. To make our discussions
fully rigorous, we proceed as follows.

Set

ǫ :=
1√
n
,

and view the parameter γ as a function of ǫ (where we recall k is fixed). Let

η :=
1

γn
=
ǫ2

γ
,

so that
−ηH = ǫ2A+ η|w〉〈w|.

From (1) it follows that

rℓ(ǫ) := ǫ2λℓ = (k − ℓ)(1− (k + ℓ)ǫ2)− ℓǫ2,

where 0 6 ℓ 6 k. Likewise, from (2) it follows that

pℓ(ǫ) := ‖Pℓ|w〉‖ = ǫk−ℓ

√

k!(1 − (2ℓ− 1)ǫ2)

ℓ!(1− (ℓ− 1)ǫ2) · · · (1 − (k − 1)ǫ2)
.

By these comments and (3) and (4), the matrix representation of −ηH in the
above basis is

−ηH = diag(r0(ǫ), r1(ǫ), . . . , rk(ǫ)) + η
(

pℓ(ǫ)pℓ′(ǫ)
)k

ℓ,ℓ′=0
.

Our aim is to invoke the implicit function theorem for complex analytic
functions [23]. To this end, we extend for the moment the range of ǫ to complex
numbers with |ǫ|2 < (2k − 1)−1, so that the functions rℓ(ǫ) and pℓ(ǫ) are all
analytic. We now fix a ∈ C \ {0}, and consider the following k + 3 analytic
functions of k + 4 variables:

f0(ǫ, η, ξ0, ξ1, . . . , ξk, λ) = r0(ǫ)ξ0 + η p0(ǫ)
k
∑

ℓ=0

pℓ(ǫ)ξℓ − λξ0,

...

fk(ǫ, η, ξ0, ξ1, . . . , ξk, λ) = rk(ǫ)ξk + η pk(ǫ)
k
∑

ℓ=0

pℓ(ǫ)ξℓ − λξk,

fk+1(ǫ, η, ξ0, ξ1, . . . , ξk, λ) = ξ0 − a,

fk+2(ǫ, η, ξ0, ξ1, . . . , ξk, λ) =

k
∑

ℓ=0

pℓ(ǫ)ξℓ − 1.
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Note that fj(ǫ, η, ξ0, ξ1, . . . , ξk, λ) = 0 for 0 6 j 6 k if and only if the vector
(ξ0, . . . , ξk)

T is an eigenvector of −ηH with eigenvalue λ, where T denotes
transpose.

When ǫ = 0 and η = k, we have −ηH = diag(k, k − 1, . . . , 1, k), which has
eigenvalue k with multiplicity two. The vector (a, 0, . . . , 0, 1)T is an eigenvector
with eigenvalue k, and hence fj(0, k, a, 0, . . . , 0, 1, k) = 0 for 0 6 j 6 k + 2.
The Jacobian matrix of the functions fj (0 6 j 6 k + 2) with respect to the
k + 3 variables η, ξ0, ξ1, . . . , ξk, λ is given by















p0(ǫ)
∑k

ℓ=0 pℓ(ǫ)ξℓ −ξ0
... −ηH − λI

...

pk(ǫ)
∑k

ℓ=0 pℓ(ǫ)ξℓ −ξk
0 1 0 · · · 0 0
0 p0(ǫ) p1(ǫ) · · · pk(ǫ) 0















,

where I denotes the identity matrix of degree k + 1. At (0, k, a, 0, . . . , 0, 1, k),
this becomes























0 0 −a
0 −1 0
...

. . .
...

0 1− k 0
1 0 −1
0 1 0 · · · 0 0 0
0 0 0 · · · 0 1 0























,

which is nonsingular since a 6= 0, and hence the implicit function theorem ap-
plies: there exist analytic functions η(ǫ), ξ0(ǫ), . . . , ξk(ǫ), λ(ǫ) of ǫ such that, on
some neighborhood of (0, k, a, 0, . . . , 0, 1, k), we have fj(ǫ, η, ξ0, ξ1, . . . , ξk, λ) =
0 for 0 6 j 6 k+ 2 if and only if η = η(ǫ), ξ0 = ξ0(ǫ), . . . , ξk = ξk(ǫ), λ = λ(ǫ).
In fact, we have

ξ0(ǫ) ≡ a. (5)

Moreover, it follows that

λ(ǫ)ξℓ(ǫ) = rℓ(ǫ)ξℓ(ǫ) + η(ǫ)pℓ(ǫ), (6)

for 0 6 ℓ 6 k. Observe that

pℓ(ǫ) =

√

k!

ℓ!
ǫk−ℓ +O(ǫk−ℓ+1). (7)

Set ℓ = 0 in (6). Then since η(0) = k, it follows from (5) and (7) that

λ(ǫ) = r0(ǫ) +

√
k! k

a
ǫk +O(ǫk+1). (8)

Note that

r0(ǫ)− rℓ(ǫ) = ℓ+O(ǫ2), (9)



Spatial Search on Johnson Graphs by Continuous-Time Quantum Walk 7

for 0 6 ℓ 6 k. In particular, for 1 6 ℓ 6 k, ǫ = 0 is not a pole of 1/(λ(ǫ)−rℓ(ǫ)),
and by (6) we have

ξℓ(ǫ) =
η(ǫ)pℓ(ǫ)

λ(ǫ)− rℓ(ǫ)
.

Hence

1 =
k
∑

ℓ=0

pℓ(ǫ)ξℓ(ǫ) = ap0(ǫ) + η(ǫ)
k
∑

ℓ=1

pℓ(ǫ)
2

λ(ǫ)− rℓ(ǫ)
. (10)

Since

1

λ(ǫ)− rℓ(ǫ)
=

1

r0(ǫ)− rℓ(ǫ)
−

√
k! k

ℓ2a
ǫk +O(ǫk+1)

by (8) and (9), it follows from (7) that

k
∑

ℓ=1

pℓ(ǫ)
2

λ(ǫ)− rℓ(ǫ)
=

k
∑

ℓ=1

pℓ(ǫ)
2

r0(ǫ)− rℓ(ǫ)
−

√
k!

ka
ǫk +O(ǫk+1).

Since the constant term above equals 1/k by (7) and (9), it follows from (10)
that

η(ǫ) =

(

k
∑

ℓ=1

pℓ(ǫ)
2

λ(ǫ)− rℓ(ǫ)

)−1

(1− ap0(ǫ))

=





(

k
∑

ℓ=1

pℓ(ǫ)
2

r0(ǫ)− rℓ(ǫ)

)−1

+

√
k! k

a
ǫk +O(ǫk+1)



(1− ap0(ǫ))

=

(

k
∑

ℓ=1

pℓ(ǫ)
2

r0(ǫ)− rℓ(ǫ)

)−1

+
√
k! k

(

1

a
− a

)

ǫk +O(ǫk+1).

We note that the terms of degree less than k in η(ǫ) are independent of a.

3 Spatial search algorithm

We now move on to the discussions on the search algorithm. Recall that the
Hamiltonian H = −γA− |w〉〈w| is determined by ǫ = 1/

√
n and η = 1/γn =

ǫ2/γ. We consider three kinds of η as follows. In the preceding discussions, we
choose a = ±1, so that

1

a
− a = 0.

We may choose any real scalar ρ and two values of a so as to 1/a − a = ρ
to achieve a quadratic speedup, but it can be shown that setting ρ = 0 gives
asymptotically optimal success probability 1 + o(1). We will use + (resp. −)
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to mean functions associated with a = +1 (resp. a = −1), e.g., λ+, ξ+i . In par-
ticular, we have η± and thus two Hamiltonians H±. For the search algorithm,
we will use the Hamiltonian H = H◦ determined when η is

η◦ :=

(

k
∑

ℓ=1

pℓ(ǫ)
2

r0(ǫ)− rℓ(ǫ)

)−1

. (11)

Note that
η± = η◦ +O(ǫk+1). (12)

Let ξ± = (ξ±0 , . . . , ξ
±

k )T, so that

− η±H±ξ± = λ±ξ±. (13)

We have
ξ± = (±1, 0, . . . , 0, 1)T + o(1),

where the Landau notation is used entrywise for vectors and matrices. In
particular,

‖ξ±‖2 = 2 + o(1), 〈ξ+|ξ−〉 = o(1). (14)

Recall that the algorithm begins in the state

ψ(0) = |s〉 = |λ0〉 = (1, 0, . . . , 0)T =
1

2
ξ+ − 1

2
ξ− + o(1). (15)

On the other hand, it follows from (7) that

|w〉 =
k
∑

ℓ=0

Pℓ|w〉 =
k
∑

ℓ=0

pℓ(ǫ)|λℓ〉 = (0, . . . , 0, 1)T + o(1)

=
1

2
ξ+ +

1

2
ξ− + o(1). (16)

3.1 Computational complexity

In order to analyze the algorithm, we will need to estimate the differences of
the operators e−iH±t and e−iH◦t. To this end, we recall Wilcox’s formula [24]
for the derivative of a matrix exponential function. Let M(η) be a square
matrix function of a real variable η which is of class C1, and let t be another
real variable. Then we have

∂

∂η
eM(η)t =

∫ t

0

eM(η)(t−s) dM

dη
(η) eM(η)s ds. (17)

This formula is proved, e.g., by observing that, for every fixed η, both sides
above satisfy the linear differential equation

dΦ

dt
(t) =M(η)Φ(t) +

dM

dη
(η) eM(η)t
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with initial condition Φ(0) = 0. We use Wilcox’s formula (17) with M(ǫ, η) =
−iH(ǫ, η) to obtain

∂

∂η
e−iH(ǫ,η)t = −i

∫ t

0

e−iH(ǫ,η)(t−s) ∂H

∂η
(ǫ, η) e−iH(ǫ,η)s ds.

Since

H = −1

η
diag(r0(ǫ), r1(ǫ), . . . , rk(ǫ))−

(

pℓ(ǫ)pℓ′(ǫ)
)k

ℓ,ℓ′=0
,

we have
∂H

∂η
(ǫ, η) =

1

η2
diag(r0(ǫ), r1(ǫ), . . . , rk(ǫ)).

Assuming that η is sufficiently close to k, the entries of this matrix are bounded,
irrespective of ǫ = 1/

√
n. The matrix e−iH(ǫ,η)s is diagonalized by a real orthog-

onal matrix, and its eigenvalues all have modulus one, from which it follows
that all of its entries are bounded by, say, k + 1, irrespective of ǫ, η, and s. A
similar result holds for e−iH(ǫ,η)(t−s). By these comments, all the entries of the
integrand are uniformly bounded by a constant R > 0, which is independent
of the parameters (as long as η is close to k). It follows that the entries of
∂e−iH(ǫ,η)t/∂η are bounded by R|t|. By the mean value theorem, it follows

that the entries of e−iH±t − e−iH◦t are bounded by R|t(η± − η◦)|.
We set the running time as

trun =
πnk/2

2
√
k!

=
π

2
√
k! ǫk

(

≈ π
√
N

2

)

.

Since trun = O(nk/2) = O(1/ǫk), it follows from the above comments and (12)
that

e−iH±trun = e−iH◦trun + o(1).

We have also mentioned that e−iH±trun , e−iH◦trun = O(1). Hence it follows
from (13) and (15) that

ψ(trun) = e−iH◦trun |s〉

=
1

2
e−iH+trunξ+ − 1

2
e−iH−trunξ− + o(1)

=
eiλ

+trun/η
+

2
ξ+ − eiλ

−trun/η
−

2
ξ− + o(1).

By (8) (applied to a = ±1), (12), and since η◦(0) = k, we have

λ±(ǫ)

η±(ǫ)
=
r0(ǫ)

η◦(ǫ)
±
√
k! ǫk +O(ǫk+1),

so that
(

λ+

η+
− λ−

η−

)

trun = π + o(1).



10 Hajime Tanaka et al.

Hence

ψ(trun) = eiλ
+trun/η

+

(

1

2
ξ+ +

1

2
ξ−
)

+ o(1),

and it follows from (14) and (16) that the success probability is

psucc = |〈w|ψ(trun)〉|2 = 1 + o(1),

concluding the analysis of the computational complexity.

3.2 Some final observations

We remark that η◦ can in fact be replaced by any analytic function of ǫ = 1/
√
n

whose series expansion agrees with the right-hand side of (11) up to terms of
degree k. Our choice of the parameter γ is

γ◦ :=
ǫ2

η◦
= ǫ2

k
∑

ℓ=1

pℓ(ǫ)
2

r0(ǫ)− rℓ(ǫ)
,

but the terms of degree higher than k + 2 can be discarded or changed arbi-
trarily.

We list some values of γ◦ for small k:

γ◦
∣

∣

∣

k=3
=
ǫ2(1− 3ǫ2)(2 + ǫ2 + 16ǫ4 − 52ǫ6 + 24ǫ8)

6(1− ǫ2)2(1− 2ǫ2)2
,

γ◦
∣

∣

∣

k=4
=
ǫ2(1− 4ǫ2)(3− 11ǫ2 + 33ǫ4 + 47ǫ6 − 660ǫ8 + 1116ǫ10 − 432ǫ12)

12(1− ǫ2)2(1− 2ǫ2)2(1 − 3ǫ2)2
,

γ◦
∣

∣

∣

k=5
= ǫ2(1− 5ǫ2)

(

12− 117ǫ2 + 532ǫ4 − 1107ǫ6 + 2508ǫ8 −

22588ǫ10 + 80448ǫ12 − 99648ǫ14 + 34560ǫ16
)

/
(

60(1− ǫ2)2(1 − 2ǫ2)2(1− 3ǫ2)2(1− 4ǫ2)2
)

.

It seems that there is no “clean” expression for γ◦. For k = 3, we have

γ◦ =
ǫ2

3
+

7ǫ4

6
+O(ǫ6),

which was used by Wong [17] in his algorithm for J(n, 3).

4 Conclusions

We have analyzed the quantum spatial search algorithm on Johnson graphs
J(n, k) by continuous-time quantum walks. We have explored the distance-
transitivity to define an invariant reduced subspace of the Hilbert space based
on subsets of the vertex set that have the same distance to the marked vertex.
The key point to have success in the calculation process is to use an alterna-
tive basis for the reduced space, which is obtained by projecting the marked
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state |w〉 onto the reduced space with projectors Pℓ, which are projectors onto
the eigenspaces of the adjacency operator associated with eigenvalues λℓ, for
0 6 ℓ 6 k. Two eigenvectors of the Hamiltonian are used to obtain the time
evolution of the quantum walk, and by taking a running time equal to π

√
N/2

approximately, we have showed that the success probability is 1 + o(1) for
every fixed k. Our proof is fully rigorous from the mathematical point of view
and generalizes the continuous-time Grover search on the complete graph.

As a future work, we are interested in generalizing our method for larger
subclasses of distance-transitive graphs or distance-regular graphs.

Acknowledgements

The work of H. Tanaka was supported by JSPS KAKENHI grant number
JP20K03551. The work of R. Portugal was supported by FAPERJ grant num-
ber CNE E-26/202.872/2018, and CNPq grant number 308923/2019-7.

References

1. Edward Farhi and Sam Gutmann. Quantum computation and decision trees. Phys.
Rev. A, 58:915–928, 1998.

2. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm for the
Hamiltonian NAND tree. Theory of Computing, 4(8):169–190, 2008.

3. Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and
Daniel A. Spielman. Exponential algorithmic speedup by a quantum walk. In Proceed-
ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03,
page 59–68, New York, NY, USA, 2003. Association for Computing Machinery.

4. Norio Konno. Limit theorem for continuous-time quantum walk on the line. Phys. Rev.
E, 72:026113, Aug 2005.

5. Norio Konno. Continuous-time quantum walks on trees in quantum probability theory.
Infinite Dimensional Analysis, Quantum Probability and Related Topics, 09(02):287–
297, 2006.

6. Oliver Mülken and Alexander Blumen. Continuous-time quantum walks: Models for
coherent transport on complex networks. Physics Reports, 502(2):37–87, 2011.

7. Luca Razzoli, Matteo G. A. Paris, and Paolo Bordone. Transport efficiency of
continuous-time quantum walks on graphs. Entropy, 23(1), 2021.

8. Claudia Benedetti, Matteo A. C. Rossi, and Matteo G. A. Paris. Continuous-time quan-
tum walks on dynamical percolation graphs. EPL (Europhysics Letters), 124(6):60001,
Jan 2019.

9. Michele Delvecchio, Francesco Petiziol, and Sandro Wimberger. Resonant quantum
kicked rotor as a continuous-time quantum walk. Condensed Matter, 5(1), 2020.

10. Paul Benioff. Space searches with a quantum robot. AMS Contemporary Math Series,
305, 2002.

11. Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum walk. Phys. Rev.
A, 70:022314, Aug 2004.

12. E. Agliari, A. Blumen, and O. Mülken. Quantum-walk approach to searching on fractal
structures. Phys. Rev. A, 82:012305, Jul 2010.
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