Skip to main content
Log in

Secure device-independent quantum bit-wise XOR summation based on a pseudo-telepathy game

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a device-independent quantum bit-wise XOR summation protocol based on a pseudo-telepathy multi-partite GHZ game proposed by Brassard et al. In this game, n participants can win the game with certainty with a quantum strategy, but using any classical strategy, they can only win the game with a probability that differs from 1/2 by more than a fraction that is exponentially small in the number of participants. We also analyse the correctness and security of the proposed protocol, showing that it can resist well-known outside and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayers, D., Yao, A.: In: Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280). IEEE, pp. 503–509 (1998)

  2. Acín, A., Massar, S., Pironio, S.: Efficient quantum key distribution secure against no-signalling eavesdroppers. New J. Phys. 8(8), 126 (2006)

    Article  ADS  Google Scholar 

  3. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  4. Pironio, S., Acin, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11(4), 045021 (2009)

    Article  ADS  Google Scholar 

  5. McKague, M.: Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices. New J. Phys. 11(10), 103037 (2009)

    Article  ADS  Google Scholar 

  6. Masanes, L., Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)

    Article  ADS  Google Scholar 

  7. Barrett, J., Colbeck, R., Kent, A.: Memory attacks on device-independent quantum cryptography. Phys. Rev. Lett. 110(1), 010503 (2013)

    Article  ADS  Google Scholar 

  8. Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3(3), 031006 (2013)

    Google Scholar 

  9. Vazirani, U., Vidick, T.: Fully device independent quantum key distribution. Commun. ACM 62(4), 133–133 (2019)

    Article  Google Scholar 

  10. Kaniewski, J., Wehner, S.: Device-independent two-party cryptography secure against sequential attacks. New J. Phys. 18(5), 055004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully distrustful quantum bit commitment and coin flipping. Phys. Rev. Lett. 106, 220501 (2011)

    Article  ADS  Google Scholar 

  12. Adlam, E., Kent, A.: Device-independent relativistic quantum bit commitment. Phys. Rev. A 92, 022315 (2015)

    Article  ADS  Google Scholar 

  13. Aharon, N., Massar, S., Pironio, S., Silman, J.: Device-independent bit commitment based on the CHSH inequality. New J. Phys. 18(2), 025014 (2016)

    Article  ADS  Google Scholar 

  14. Ribeiro, J., Thinh, L.P., Kaniewski, J.M.K., Helsen, J., Wehner, S.: Device independence for two-party cryptography and position verification with memoryless devices. Phys. Rev. A 97, 062307 (2018)

    Article  ADS  Google Scholar 

  15. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12 (2020)

    Article  Google Scholar 

  16. Roy, S., Mukhopadhyay, S.: Device independent quantum secret sharing in arbitrary even dimension. Phys. Rev. A 100(1), 012319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Brassard, G., Broadbent, A., Tapp, A.: In: WADS (2003)

  18. Boyer, M.:Extended GHZ n-player games with classical probability of winning tending to 0, eprint. arXiv:quant-ph/0408090v4 (2004)

  19. Heinrich, S.: Quantum summation with an application to integration. J. Complex. 18(1), 1 (2002)

    Article  MathSciNet  Google Scholar 

  20. Heinrich, S., Novak, E.: On a problem in quantum summation. J. Complex. 19(1), 1 (2003)

    Article  MathSciNet  Google Scholar 

  21. Heinrich, S., Kwas, H., Wozniakowski, M.: Quantum Boolean summation with repetitions in the worst-average setting. arXiv:quant-ph/0311036 (2003)

  22. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Phys. Sin. 56(11), 6214 (2007)

    Article  MathSciNet  Google Scholar 

  23. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49(11), 2793 (2010)

    Article  MathSciNet  Google Scholar 

  24. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154 (1997)

    Article  ADS  Google Scholar 

  25. Crépeau, C., Gottesman, D., Smith, A.: In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing (ACM, 2002), pp. 643–652

  26. Chau, H.F.: Quantum-classical complexity-security tradeoff in secure multiparty computations. Phys. Rev. A 61, 032308 (2000)

    Article  ADS  Google Scholar 

  27. Ben-Or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.: In: 47th Annual IEEE Symposium on Foundations of Computer Science, 2006. FOCS’06. IEEE, pp. 249–260 (2006)

  28. Smith, A.: Multi-party Quantum Computation. arXiv:quant-ph/0111030 (2010)

  29. Zhang, C., Sun, Z., Huang, Y., Long, D.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933 (2014)

    Article  Google Scholar 

  30. Zhang, C., Sun, Z.W., Huang, X., Long, D.Y.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(02), 1550011 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhang, C., Situ, H., Huang, Q., Yang, P.: Multi-party quantum summation without a trusted third party based on single particles. Int. J. Quantum Inf. 15(1), 1750010 (2017)

    Article  MathSciNet  Google Scholar 

  32. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  33. Shi, R.H., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Quantum Inf. Process. 16(9), 225 (2017)

    Article  ADS  Google Scholar 

  34. Liu, W., Wang, Y.B., Fan, W.Q.: An novel protocol for the quantum secure multi-party summation based on two-particle bell states. Int. J. Theor. Phys. 56(9), 2783 (2017)

    Article  MathSciNet  Google Scholar 

  35. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17(6), 129 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ramzan, M.: Three-player quantum Kolkata restaurant problem under decoherence. Quantum Inf. Process. 12(1), 577 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sharif, P., Heydari, H.: In: AIP Conference Proceedings (American Institute of Physics, 2012), pp. 492–496

  38. Kastampolidou, K., Papalitsas, C., Andronikos, T.: DKPRG or how to succeed in the kolkata paise restaurant gamevia TSP. arXiv preprint arXiv:2101.07760 (2021)

  39. Šupić, I., Coladangelo, A., Augusiak, R., Acín, A.: Self-testing multipartite entangled states through projections onto two systems. New J. Phys. 20(8), 083041 (2018)

    Article  ADS  Google Scholar 

  40. Breiner, S., Kalev, A., Miller, C.A.: Parallel self-testing of the GHZ state with a proof by diagrams. arXiv preprint arXiv:1806.04744 (2018)

  41. Hoeffding, W.: In: The Collected Works of Wassily Hoeffding (Springer, 1994), pp. 409–426

  42. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat, pp. 39–48 (1974)

  43. Cavalcanti, D., Brandão, F.G., Cunha, M.T.: Are all maximally entangled states pure? Phys. Rev. A 72(4), 040303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61902132, 11647140), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515011985), and the Natural Science Foundation of Guangdong Province of China (Grant No. 2018A030310147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wei, T. Secure device-independent quantum bit-wise XOR summation based on a pseudo-telepathy game. Quantum Inf Process 21, 82 (2022). https://doi.org/10.1007/s11128-022-03426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03426-8

Keywords

Navigation