
ar
X

iv
:2

10
6.

05
53

7v
2 

 [
qu

an
t-

ph
] 

 2
2 

Fe
b 

20
22

Multi-server Blind Quantum Computation

Protocol with Limited Classical Communication

among Servers

Yuichi Sano∗1

1Department of Nuclear Engineering, Kyoto University,

Nishikyo-ku, Kyoto 615-8540, Japan

February 23, 2022

Abstract

A user who does not have a quantum computer but wants to perform

quantum computations may delegate his computation to a quantum cloud

server. For users securely using the service, it must be assured that no

malicious server can access any vital information about the computation.

The blind protocol was proposed as a mechanism for users to secure their

information from unauthorized actions of the server. Among the blind

protocols proposed thus far, a protocol with two servers sharing entangle-

ment does not require any quantum resource from the user but does not

allow the servers to interact even after the computation. We propose a

protocol in this paper that extends this two-server protocol to multiple

servers and is secure even if some servers communicate with each other

after the computation. Dummy gates and a circuit modeled after brick-

work states play a crucial role in the new protocol. We also show that it

is possible to make estimates for risks that could not be estimated in a

previous study.

1 Introduction

Quantum computers have been actively studied with the expectation of pro-
viding higher computational capacity than classical computers. For example,
Shor’s algorithm uses the quantum Fourier transform to solve prime factoriza-
tion and discrete logarithm problems exponentially faster than existing conven-
tional algorithms. Grover’s algorithm is the fastest searching algorithm for an
unordered database, at a speed that is thought to be impossible to achieve with

∗sano.yuichi.77v@st.kyoto-u.ac.jp

1

http://arxiv.org/abs/2106.05537v2


classical computation [2]. In addition to specific algorithms, it is known that
classical computers cannot sample as fast as quantum computers in the sam-
pling problem [3,4]. While quantum computers have such superiority, they will
be enormously expensive compared with classical ones even if they will become
available in the future as they will need some fine-tuned microscopic devices to
use quantum effects..

When quantum computers are used as cloud servers, user security is a con-
cern. The user needs to send information about his calculations to the server
to delegate the calculations. If the server is malicious, it may illegally obtain
the user’s information. Therefore, the user must do a blind quantum computa-
tion [5–11]. A blind quantum computation protocol securely encrypts inputs,
outputs, and calculation process of the calculations delegated by the user to
the server. Blind quantum computation is expected to be an advantage of the
new quantum computation because it is more powerful than fully homomorphic
encryption, which is its classical analog [12].

At the moment, a blind quantum computation cannot be performed un-
conditionally; therefore, servers and users must be subjected to constraints. A
commonly studied blind protocol is with the user and only a single server [5–9].
With the protocol of using the single server, the user does not have to impose any
restrictions on the server, but the user’s abilities must be higher than the abilities
of classical communication and classical computation. However, in the protocol
of using multiple servers, the user only needs to have the abilities of classical
computation and classical communication to delegate his calculation [10, 11].
Classical computation and communication abilities are now widely available,
and they are thus considered to be essential abilities for users. Therefore, these
protocols using multiple servers are very convenient for users. However, very
strong restrictions are imposed on the server: servers cannot do classical com-
munication with each other. In reality, we cannot assume that servers do not
have the ability to perform classical communication with each other, so we can
assume that servers do not perform classical communication with each other ac-
cording to the contract with the user. There is no problem if the server honors
the contract; however, we need a blind protocol in case the server is malicious
in the first place. In addition, servers that initially honor their contracts with
users may suddenly break those contracts. The current protocol does not allow
users to estimate the extent of those risks. The purpose of our study is to relax
the restrictions imposed on servers and to provide a way for users to estimate
security against malicious servers.

In this study, we propose a blind protocol using multiple servers, in which
some servers can classically communicate after the computation. First, we ex-
tend the protocol from two servers case discussed in previous studies. Next, we
assume the situation where some servers can do classical communication after
a calculation. We then propose a method of encrypting the circuits used in the
calculation so that the user can delegate the calculation by the blind computa-
tion even if some servers are in classical communication after the calculation.
Moreover, we show that if the user delegates his calculation to sufficiently many
servers, the risk of their knowledge about the user’s computation can be esti-

2



mated.

2 Preliminaries

In this section, we describe a blind protocol and explain the blind protocol with
two servers, which is the basis of the protocol proposed in our study.

2.1 Blind Quantum Computation Protocol

In this subsection, we first describe a blind protocol. The blind protocol, first
proposed by Childs [5], is a security protocol that hides a user’s input/output
and calculation process from a server. To be more specific, when a user uses
blind protocol to delegate his computation, the server has no way of knowing
whether the multiple delegated calculations are the same or even different. A
classical analog is a fully homomorphic encryption, where the input and out-
put are encrypted while the calculation is performed [12]. The fully homo-
morphic encryption server delegated the calculation has no knowledge of the
input/output, but it knows about the operation being performed. Therefore,
the blind protocol is superior to the fully homomorphic encryption in terms of
security because it can also hide the calculation process. There are currently no
known blind protocols in classical computation using classical computer servers.
For this reason, blind protocols are a unique advantage of quantum computa-
tion.

Broadbent, Fitzsimons, and Kashefi give the following definition of the blind
protocol [6].

Definition 1 (Blindness [6, Definition 2]). Let P be a quantum delegated com-
putation on input X and let L(X) be any function of the input. We say that
a quantum delegated computation protocol is blind while leaking at most L(X)
if, on user’s input X, for any fixed Y = L(X), the following two conditions when
given Y:

1. The distribution of the classical information obtained by server in P is
independent of X.

2. Given the distribution of classical information described in 1, the state of
the quantum system obtained by server in P is fixed and independent of
X.

The blind protocol is a computational protocol that satisfies definition 1.
This definition allows the server to know calculation-independent information
such as the size of gates and information about protocol instructions but does
not allow it to obtain calculation-dependent information that can distinguish
between any calculations.

3



2.2 Two Server Blind Protocol

The first proposed blind protocol is performed by a user with quantum memory
and a single quantum server [5]. Since then, blind protocols have been proposed,
but blind protocols performed between a single server and a user require the
user to have quantum abilities [5–9]. Currently, there is no known blind protocol
that can be performed by the user having only abilities of classical computation
and classical communication with a single server [13]. It is also not known about
the possible or impossible existence of the blind protocol with a single server
with the user who has only classical computation and classical communication
abilities, but some negative results have been obtained [14, 15].

In contrast, blind protocols with two servers are available for users who can
only perform classical computation and classical communication [10,11]. These
blind protocols are executed by a user making individual classical communica-
tion with multiple servers that share entanglement states. However, classical
and quantum communication among servers is prohibited during and after the
computation. The ability to perform classical computation and classical commu-
nication is so common that, for example, a single desktop computer is sufficient,
which is very convenient for users.

In this paper, we propose a protocol based on the protocol [10] that allows
blind computation even after some servers have performed classical computa-
tion. For this purpose, we first describe the protocol in [10].

Theorem 2 (MIP∗ = QMIP [10]).

MIP∗ = QMIP.

MIP∗ is a set of problems that can be verified via classical communication
between a user with the ability of classical computation and servers who can
unbounded computation and share entanglement among servers. QMIP is a set
of problems that can be verified via quantum communication between a user
who has the ability of quantum computation and servers who have the ability
of infinite computation. With theorem2, the following lemma is also known for
the case where the server(verifier) is limited.

Lemma 3 (Two Server Blind Quantum Computation Protocol [10]).

MIP∗[2 servers] ≥ QMIP[0 server] = BQP.

Lemma 3 shows that a user can achieve the same results as a quantum
computer by using classical communication with two servers that share entan-
glements. This means that a user can do quantum computation without sending
any information to the servers. We do not go into detail about the protocol, but
it’s based on the user monitoring the server’s activity utilizing the two servers’
entanglement. Servers do not communicate with each other by assumption be-
cause this protocol is built on the interactive proof system of computational
complexity theory. If users try to implement this protocol in the real world,
they will have to sign a contract prohibiting the server’s classical communi-
cation. The limitations placed on this server are extremely stringent. In the
following section, we propose a partial relaxation of this restriction.

4



3 Multi-server Blind Quantum Computation Pro-

tocol with Limited Classical Communication

among Servers

In this section, we propose a protocol that allows the user’s computation to
remain blindness even if some servers perform classical communication with
other servers after the computation that the user delegates for servers. To do
that, we first show that it is possible to perform the protocol on several servers,
as extended from the two servers’ protocol of the previous study [10]. Next, we
show how to encrypt the circuit so that even if the server gets some information
about the circuit, it cannot know anything about the calculation that the user
delegated to it.

3.1 Extension to Multiple Servers

In principle, the protocol from the preceding study is performed by two servers
and a user using classical communication. When the number of servers is in-
creased from two to many, each server has less knowledge about the calculation.
One trivial way to increase the number of servers is to add virtual servers that
do not participate in the calculation, but we will not consider this. We suggest a
non-trivial method for increasing the number of servers by internally separating
each of the protocol’s two servers from the prior study.

Theorem 4. Even though the internal roles of the two servers in the lemma 3
protocol are split into multiple servers each, the protocol is still a blind protocol.

Proof. We refer to the two servers used by lemma 3 as server A and server B,
respectively. We will split these servers into several groups. The set of servers
that split server A is {Aa}a, and the set of servers that split server B is {Bb}b,
where a and b are the number of server A and server B splits. Let {mA

a }a and
{mB

b }b be the set of messages that a user sends to each server.
We use proof by contradiction. We assume that the server can break blind-

ness and obtain information about the user’s calculation using this server-
splitting protocol. By assumption, the server is getting information from the
messages {mA

a }a and {mB
b }b with the user that would break blindness. Let mA

and mB be the sets of messages received by the original server A and server B.
The server split is just a split of the internal workings of the original server, so
{mA

a }a can be created from mA. The {mB
b }b can be created in the same way.

Thus, the original server A and server B can easily simulate the server’s behav-
ior after the split. Therefore, the original server A and server B can also obtain
information that breaks the blindness. However, this contradicts the fact that
the protocol consisting of server A and server B is a blind protocol. Hence, the
assumption is wrong, i.e., the protocol will remain a blind protocol even if the
server is split such that the internal roles of server A and server B are split.

It turns out that the lemma 3 can be solved using two or more multiple
servers. As the number of servers used for computation grows, the circuits

5



that use the computation become more fragmented, and each server knows less
about the user’s calculation. In reality, the amount of information each server
knows is irrelevant if the servers do not use classical communication. However,
each server needs to have a small amount of information if the servers perform
classical communication with each other after the computation. If some servers
are allowed to communicate with other servers after the calculation, two servers
can quickly learn the entire circuit if the protocol of the previous study. But if
the number of servers participating in the calculation becomes huge, it becomes
difficult to know everything completely. Of course, part of the circuit depends
on the calculation, so the protocol is no longer a blind protocol under such
an assumption. In the next subsection, we will encrypt the circuit so that
servers can get some information about the circuit, but not the information
that depends on the calculation of the user.

3.2 Main Protocol

We propose a blind protocol in this subsection, even if some servers commu-
nicate after the computation and transfer information about the computation
to one another. The protocol used in the prior study, the protocol comprises
two servers: one server that runs quantum gates on qubits and another that
receives those qubits once and returns them to the first server. Thus, the entire
quantum circuit for a calculation is realized by one of the two servers. From the
information in the quantum circuit, the server knows the input and output of
the calculation and the calculation process. Therefore, when the server is split
up, if the server on the side running the quantum circuit shares information,
information about the user’s calculations will be leaked. Hence, we propose a
method to encrypt the circuit so that even if the server knows some information
about the circuit, the information does not depend on the user’s calculation.

In the previous study, {CNOT,G} is used as the universal gate set [16]. G
gate is a gate that looks like

G = Ry(
−π

8
). (1)

We adopt {H,T,CZ} as a universal gate set for simplicity [17]. These universal
gate sets can approximate each other with polynomials, so the difference is not
essentially significant [17].

First, we define a circuit like brickwork states [6] to perform calculations
with the same structure.

Definition 5 (Circuit Like Brickwork States). A circuit like brickwork states
consists of fixed number n of gates vertically and fixed number p(n), is a poly-
nomial of n, of gates horizontally. The circuit is composed as follows. We can
always make n and p(n) an even number by adding ancilla gates. The circuit is
created in the following steps.

Step 1. Each row starts with arbitrary unitary operator V which consists of
m gates.

6



Step 2. Then, a unitary operator U1 is put on the l-th row, where l is {l =
2k + 1|k = 0, 1 . . . , n

2
− 1}, and a unitary operator U2 is put on l + 1 th

row.

Step 3. The user puts the CZ gate between the l-th row and the l+1 th row.

Step 4. A unitary operator U3 is put on the l-th row, and a unitary operator
U4 is put on l + 1 th row.

Step 5. The user performs arbitrary unitary operator V which consists of m
gates on each row.

Step 6. The unitary operator U2 is put on the l-th row, and the unitary oper-
ator U1 consisting of four gates is put on l − 1 th row. The user does not
execute anything in the first and last row between steps 6 to 8.

Step 7. The user puts the CZ gate between the l-th row and the l− 1 th row.

Step 8. The unitary operator U4 is put on the l-th row, and the unitary oper-
ator U3 is put on l − 1 th row.

Step 9. Repeat steps 1 to 8 until the last column is reached.

The unitary operators {U1, U2, U3, U4} that exist in front of each CZ gate can
be changed to the identity gate or the CNOT gate by changing it as shown in
Figs.2–3. If U1 = I, U2 = I, U3 = I, U4 = I, the two CZ gates, and the four
unitary operators act as the identity gate. If U1 = Rz(

π
2
), U2 = Rx(

π
2
), U3 =

I, U4 = Rx(
−π
2
), the two CZ gates and the four unitary operators act as the

CNOT gate. Each unitary operator can be made with a combination of identity
gate, T gate, T †, and H gate as shown below:

I = H · I ·H · I, (2)

Rz(
π

2
) = H · I ·H · T 2, (3)

Rx(
π

2
) = H · T 2 ·H · I, (4)

Rx(
−π

2
) = H · T †2 ·H · I. (5)

And we assume that the number m of gates constituting an arbitrary unitary
operator V between CZ gates is fixed. The reason is that to be a blind protocol,
m needs to be fixed for any circuit, should not be determined for each circuit.

A circuit like brickwork states has a form like Fig. 1. Using this circuit like
brickwork states, servers can know about the structure of the circuit but cannot
get any information about the computation. The user can run any circuit by
setting V and Ui in Fig. 1 appropriately.

It is known that any single qubit gate can be made from a combination of H
gate and T gate [17]. Specifically, it approximates an arbitrary single qubit gate

7



Figure 1: Circuit like brickwork states.

I • I •

I • I •

Figure 2: Combination of the CZ gates and single qubit gates acting as the
identity gate.

by rotating of two axes on the Bloch ball, HTHT and HT †HT †. Adding the
identity gate I = HIHI to these two sets allows the user to create any circuit
by combining it with the circuit like brickwork states.

Next we discuss dummy gates to eliminate information about the computa-
tion from these gate combinations.

Definition 6 (Dummy gates). Dummy gates consist of a combination of the
following gates:

D1 = HT, (6)

D2 = HT †, (7)

D3 = HI. (8)

For a constant K, a gate sequence that is a combination of all K consecutive
gates from {D1, D2, D3} is called dummy gates.

As mentioned earlier, an arbitrary single qubit gate consists of HTHT ,
HT †HT †, and HIHI. When a single qubit gate consists of K/2 combinations
of these three, the dummy gates consisting of K consecutive {D1, D2, D3} are
added except for duplicate gates. A server who knows nothing about the orig-
inal single qubit gate will not distinguish between those dummy gates and the
original. By using those dummy gates, even if the server gets the information of
K/2 consecutive gates from the user, the server cannot distinguish which gate is
the original gate by running the dummy gates in parallel. By definition, dummy
gates do not allow the server to obtain any information about the calculation,
even if the server knows about a gate combination of less than K/2. Adding
dummy gates to the calculation is efficient because it is an operation that adds
at most 3K gates when K is a constant.

8



Rz(
π
2
) • I •

Rx(
π
2
) • Rx(

−π
2
) •

Figure 3: Combination of the CZ gates and single qubit gates acting as the
CNOT gate.

We show the procedure required to hide the output. The measurement
required during the protocol is not dependent on the calculation, but the final
measurement result, which is the output of the calculation, is dependent on the
calculation. Therefore, we randomly perform an X gate or an identity gate at
the end of each calculation. The user accepts the result of the identity gate
being executed and flips and accepts the result of the X gate being executed.
In this case, the probability of getting output either “0” or “1” as the server’s
measurement result is 50% each, and the actual output of the calculation cannot
be known from the measurement result. Next, we show how to execute the X
gate or the identity gate without the server’s knowledge. X-axis rotation on the
Bloch ball can be implemented as follows:

Rx(
π

4
) = H · T ·H · I. (9)

If this Rx(
π
4
) is applied four times, it becomes the X gate, and if it is applied

eight times, it becomes the identity gate. In other words, when the number of
times Rx(

π
4
) is executed in a certain gate sequence is divided by 8, the remainder

of 4 or 0 changes whether it is the X gate or the identity gate. Thus, the user
can hide the number of Rx(

π
4
) executions by bringing the gate sequence so long

that it is not known by some servers that perform classical communication after
the computation, and execute the X gate or the identity gate without the server
know.

Finally, we propose the main protocol that is summarized about the encryp-
tion of the circuit. In the following, we assume that the number of entire servers
is 2N and that K servers (N > ⌊K/2⌋) do classical communication after the
computation.

Definition 7 (Main protocol). The basic structure of the protocol is the same
as lemma 3. However, the two servers in lemma 3 are divided into N servers
each, i.e., the whole system will consist of 2N servers. We label each server as
{A1, A2, · · · , AN} and {B1, B2, · · · , BN}, then Ai receives quantum states from
Bi−1, executes any gate, and passes quantum states to Bi. We also define that
the server BN sends a quantum state to server A1. This protocol encrypts the
circuit in the following process instead of using the user’s circuit in lemma 3.

Step 1. The user restructures the circuit for the calculations by using the cir-
cuit like brickwork states.

9



Step 2. The user decomposes V and Ui, which compose the circuit like brick-
work states, into HTHT , HT †HT †, and HIHI. Note that it is necessary
to ensure that the number of gates that consist V is constant.

Step 3. The user adds dummy gates to the circuit so that the dummy gates are
run in parallel for the gate sequence of ⌊K/2⌋ gates for the gates consisted
in step. 2. At this step, the number of gates added is at most 3K/2 of the
original number of gates, which is efficient.

Step 4. Finally, the user executes randomly the X gate or the identity gate
using the gate sequence consisting of 4N gates that are HTHI or HIHI
just before measuring the quantum state corresponding to the output.
The X gate or the identity gate that hides the output also applies to the
gate sequence of the dummy gates. The number of gates added in this
step is 4N3K/2n for every n input qubits, so it is polynomial increasing
and therefore efficient.

The user limits the gate to {HT,HT †, HI} that each server executes at a time
for a gate sequence of N {HT,HT †, HI}.

We show that the main protocol is a blind protocol even when K servers of
the 2N servers (N > ⌊K/2⌋) can do classical communication after the compu-
tation.

Theorem 8. The main protocol is a blind protocol even when K servers of the
2N servers (N > ⌊K/2⌋) can do classical communication after the computation.

Proof. Since we assume that all servers do not perform classical communication
during the computation, from lemma 3 and theorem 4, the servers cannot get
information about the user’s computation.

Next, we consider what happens after the server finishes the computation
delegated by the user and sends the output to the user. The assumption is that
the K servers can perform classical communication after the user’s computation
is completed. It is shown from lemma 3 and theorem 4 that servers that do not
perform classical communication with other servers after the computation is
finished do not get information that depends on the user’s computation. Then,
we describe the servers that do the classical communication with other servers.
Since servers can do classical communication with each other, the protocol that
users use to prevent servers from doing things differently from the user’s in-
structions are no longer relevant to the server, and the server can directly get
information about the user’s circuit.

Even if the server can obtain information about the user’s circuit, we show
that it cannot get information that depends on the user’s computation. Since
the circuit is built using the structure of the circuit like brickwork states, the
server is unable to get information about the computation from the circuit
structure. The server also gets information about the circuit’s consecutive gates
at most ⌊K/2⌋, but the circuit uses dummy gates parallel with the original
gates. Since the server cannot distinguish between the dummy gates and the

10



original gates because it does not know the original user’s calculations, the gate
information that the server obtained is all the possible gate combinations it
could get. Hence, the server cannot get information that depends on the user’s
calculations from the gate information. The input can be decomposed into |0〉
and gates without loss of generality; therefore, it can be hidden just like the
gate. Since the measurement results during the computation process do not
depend on the user’s original calculation, the server cannot obtain information
that depends on the user’s calculation from them. The server also gets some
of the measurement results that correspond to the output of the calculation.
However, recall that the user encrypted this output using the X gate or the
identity gate randomly. The server cannot distinguish between the X gate and
the identity gate without knowing all of the gates in the last 4N gate sequences.
By the assumption, the server know only about 4⌊K/2⌋ gates out of 4N , the
server cannot know about the gates that encrypt the output. Therefore, the
server’s output is half “0” and half “1”, and the server cannot decrypt it, so
the output does not depend on the user’s calculations. The above result holds
that even if the server performing the classical communication is less than K.
The classical information available to the server does not depend on the user’s
original calculation.

The server’s quantum state is identical to the two servers protocol. If those
servers can get a quantum state that depends on the calculation, servers can
also get the quantum at the time of the two servers. This contradicts lemma
3. Therefore, the quantum state obtained by the server is independent of the
user’s original calculation.

Hence, the main protocol is a blind protocol even if K servers of the 2N
servers (N > ⌊K/2⌋) can do classical communication after the computation.

3.3 Risk Estimation

Theorem 8 is based on the premise that after the computation, only K servers
of the 2N servers (N > ⌊K/2⌋) perform classical communication after the com-
putation. In reality, we can assume that a user has made a contract with all
servers not to do classical communication with each other, but some of them
have done so in violation of the contract after the computation. Assume that t is
the average time between one server leaking information and the next, whether
consciously or unconsciously. If a user chooses a sufficiently large K, the law of
large numbers allows the user to estimate that the time it takes for the server to
get the average user’s information is (K+1)t. Of course, if (K+1)t is too long,
the value of t may become obsolete. Furthermore, although t is considered fixed
here, it is not necessarily fixed, and in practice, accurate model design for t is
necessary. However, the main protocol allows the user to choose the parameter
K, allowing him to adopt the risk of time leaking information that depends on
the parameter K rather than the risk of time leaking information by a single
server. Thus, users can estimate the risk that the previous study could not by
using the main protocol, and they can choose the number of servers according
to the risk they are willing to accept.

11



4 Discussion

In this paper, we proposed a blind protocol with multiple servers that is effec-
tive even if some servers perform classical communication after the computation.
This main protocol is an extension of the blind protocol with two servers pro-
posed in the previous study [10]. We first increased the number of servers by
splitting the role into multiple servers inside the server for the two servers used
in the protocol of the previous study. Next, we proposed a method of encrypting
the circuit such that even if some circuit information is leaked, the server will
not be able to determine which information is dependent on the user’s origi-
nal calculation. We then proposed the main protocol, which summarized them
and showed a blind protocol even in assumption. Finally, we discussed how
risk could be estimated, and the number of servers increased so that users can
manage their own acceptable risk.

One of the disadvantages of our protocol is that it uses many more gates
in the calculation than the protocol used in the previous study. The amount it
increases depends on how much risk the user is willing to accept. However, the
increase in the number of gates fits into the polynomial size. Another disadvan-
tage is that to use N servers, N quantum cloud servers sharing entanglements
should exist in reality.

Another concern is that it cannot manage the situation where all servers per-
form classical communication after the computation or perform classical com-
munication during the computation. The former is especially significant. If the
former can be solved, the blind protocol on a single server will be as secure
as the blind protocol on a single server merely by not having servers perform
classical communication with each other during computation. It is a significant
open problem to find a blind protocol that prevents servers from getting infor-
mation dependent on the user’s original calculation, even if it allows all servers
to perform classical communication after the computation.

Acknowledgment

We would like to thank Takayuki Miyadera for many helpful comments for the
paper and advice to the protocol. This preprint has not undergone peer review
or any post-submission improvements or corrections. The Version of Record
of thisarticle is published in Quantum Information Processing, and is available
online at https://doi.org/10.1007/s11128-022-03430-y.

References

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring”. Proceedings 35th Annual Symposium on Foundations of
Computer Science, 124-134, 1994.

12



[2] L. K. Grover, “A fast quantum mechanical algorithm for database search”.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
Computing, 212–219, 1996.

[3] T. Morimae, H. Nishimura, Y. Takeuchi, and S. Tani, “Impossibility of
blind quantum sampling for classical client”. Quantum Information and
Computation, 19, 0793-0806, 2019.

[4] T. Morimae and S. Tamaki, “Fine-grained quantum computational
supremacy”.Quantum Information and Computation, 19, 1089-1115, 2019.

[5] A. M. Childs, Secure assisted quantum computation. Quantum Information
and Computation, 5, 456-466, 2005.

[6] A. Broadbent, J. Fitzsimons and E. Kashefi, Universal Blind Quantum
Computation. In Proceedings of the 50st Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), 517-526, 2009.

[7] T. Morimae and K. Fujii, Blind quantum computation protocol in which
Alice only makes measurements. Physical Review A, 87, 050301, 2013.

[8] M. Hayashi and T. Morimae, Verifiable Measurement-Only Blind Quantum
Computing with Stabilizer Testing. Physical Review Letters, 115, 220502,
2015.

[9] Y. Sano, “Blind Quantum Computation Using a Circuit-Based Quantum
Computer”. arXiv:2006.06255, 2020.

[10] B. W. Reichardt, F. Unger, and U. Vazirani, “A classical leash for a quan-
tum system:Command of quantum systems via rigidity of CHSH games”. In
Proceedings of the 4th conference on Innovations in Theoretical Computer
Science, 321–322, 2013.

[11] M. McKague, “Interactive Proofs for BQP via Self-Tested Graph States”.
THEORY OF COMPUTING, 12, 1 ,2016.

[12] C. Gentry, “Fully homomorphic encryption using ideal lattices”. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
169–178, 2009.

[13] J. F. Fitzsimons, “Private quantum computation: an introduction to blind
quantum computing and related protocols”. npj Quantum Inf 3, 23, 2017.

[14] T. Morimae and T. Koshiba, “Impossibility of perfectly-secure one-round
delegated quantum computing for classical client”. Quantum Information
and Computation, 19, 0214-0221, 2019.

[15] S. Aaronson, A. Cojocaru, A. Gheorghiu, and E. Kashefi, “Complexity-
Theoretic Limitations on Blind Delegated Quantum Computation”. 46th
International Colloquium on Automata, Languages, and Programming, 6,
2019.

13

http://arxiv.org/abs/2006.06255


[16] Y. Shi, “Both Toffoli and controlled-NOT need little help to do universal
quantum computing”. Quantum Info. Comput., 3, 1, 84–92, 2003.

[17] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum in-
formation. Cambridge University Press, 2000.

14


	1 Introduction
	2 Preliminaries
	2.1 Blind Quantum Computation Protocol
	2.2 Two Server Blind Protocol

	3 Multi-server Blind Quantum Computation Protocol with Limited Classical Communication among Servers
	3.1 Extension to Multiple Servers
	3.2 Main Protocol
	3.3 Risk Estimation

	4 Discussion

