Skip to main content
Log in

The geometric measure of entanglement of multipartite states and the Z-eigenvalue of tensors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is not easy to compute the entanglement of multipartite pure or mixed states, because it usually involves complex optimization. In this paper, we are devoted to the geometric measure of entanglement of multipartite pure or mixed state by the means of real tensor spectrum theory. On the basis of Z-eigenvalue inclusion theorem and the estimation of weakly symmetric nonnegative tensor Z-spectrum radius, we propose some theoretical upper and lower bounds of the geometric measure of entanglement for weakly symmetric pure state with nonnegative amplitudes for two kinds of geometric measures with different definitions, respectively. In addition, the upper bound of the geometric measure of entanglement is also applied to multipartite mixed state case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A. 68, 042307 (2003)

    Article  ADS  Google Scholar 

  2. Hu, S., Qi, L., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A. 93, 012304 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shimony, A.: Degree of entanglement. Ann. NY. Acad. Sci. 755, 675 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hübener, R., Kleinmann, M., Wei, T.-C., et al.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl 325, 1363 (2007)

    Article  MathSciNet  Google Scholar 

  6. Wei, T.C., Das, D., Mukhopadyay, S., et al.: Global entanglement and quantum criticality in spin chains. Phys. Rev. A 71, 362 (2005)

    Google Scholar 

  7. Yoshifumi, N., Damian, M., Mio, M.: Thermal robustness of multipartite entanglement of the 1-d spin 1/2 xy model. Phys. Rev. A 79, 126 (2009)

    Google Scholar 

  8. Hayashi, M., Markham, D., Murao, M., et al.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys 50, 122104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Orús, R., Dusuel, S., Vidal, J.: Equivalence of critical scaling laws for many-body entanglement in the lipkin-meshkov-glick model. Phys. Rev. Lett 101, 025701 (2008)

    Article  ADS  Google Scholar 

  10. Qiang, W., Zhang, L.: Geometric measure of quantum discord for entanglement of dirac fields in noninertial frames. Phys. Lett. B 742, 383 (2015)

    Article  ADS  Google Scholar 

  11. Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys 51, 072102 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Che, M., Qi, L., Wei, Y., Zhang, G.: Geometric measures of entanglement in multipartite pure states via complex-valued neural networks. Neurocomputing 313, 25 (2018)

    Article  Google Scholar 

  13. Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys 51, 112201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett 86, 5188 (2001)

    Article  ADS  Google Scholar 

  15. Gross, D., Flammia, S.T., Eisert, J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Derksen, H., Makam, V.: Highly entangled tensors (2018). arXiv180309788v2

  17. Teng, P.: Accurate calculation of the geometric measure of entanglement for multipartite quantum states. Quntum Inf Process. 16, 181 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Qi, L., Zhang, G., Ni, G.: How entangled can a multi-party system possibly be? Phys. Lett. A 382, 1465 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Friedland, S., Kemp, T.: Most boson quantum states are almost maximally entangled. Proc. Am. Math. Soc. 146, 5035 (2018)

    Article  MathSciNet  Google Scholar 

  20. Chang, K., Pearson, K., Zhang, T.: Some variational principles for \(Z\)-eigenvalues of nonnegative tensors. Linear Algeb. Appl. 438, 4166 (2013)

    Article  MathSciNet  Google Scholar 

  21. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302 (2005)

    Article  MathSciNet  Google Scholar 

  22. Hu, S., Huang, Z., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method. Numer. Linear Algeb. Appl. 20, 972 (2013)

    Article  MathSciNet  Google Scholar 

  23. Chang, K., Qi, L., Zhang, T.: A survey on the spectral theory of nonnegative tensors. Numer. Linear Algeb. Appl. 20, 891 (2013)

    Article  MathSciNet  Google Scholar 

  24. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Progr. 118, 301 (2009)

    Article  MathSciNet  Google Scholar 

  25. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl 37, 290 (2016)

    Article  MathSciNet  Google Scholar 

  26. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl 32, 1095 (2011)

    Article  MathSciNet  Google Scholar 

  27. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl 35, 1582 (2014)

    Article  MathSciNet  Google Scholar 

  28. Guo, C., Lin, W., Liu, C.: A modified newton iteration for finding nonnegative Z-eigenpairs of a nonnegative tensor, Numer. Algor., 595 (2019)

  29. Li, W., Liu, D., Vong, S.-W.: Z-eigenpair bounds for an irreducible nonnegative tensor. Linear Algeb. Appl. 483, 182 (2015)

    Article  MathSciNet  Google Scholar 

  30. He, J., Huang, T.: Upper bound for the largest Z-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110 (2014)

    Article  MathSciNet  Google Scholar 

  31. Chen, L., Han, L., Yin, H., et al.: A homotopy method for computing the largest eigenvalue of an irreducible nonnegative tensor. J. Comput. Appl. Math. 355, 174 (2019)

    Article  MathSciNet  Google Scholar 

  32. Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563 (2014)

    Article  MathSciNet  Google Scholar 

  33. Ragnarsson, S., Loan, C.F.: Block tensors and symmetric embeddings. Linear Algeb. Appl. 438, 853 (2013)

    Article  MathSciNet  Google Scholar 

  34. Wei, T.C., Severini, S.: Matrix permanent and quantum entanglement of permutation invariant states, J. Math. Phys 51 (2010)

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their helpful suggestions and comments. This work was supported by the National Natural Science Foundation of China (Grant11971413,11571292) and Science and Technology Foundation of Shenzhen City (No. JCYJ20190808174211224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhou Liu or Qi Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Liu, J. & Qin, Q. The geometric measure of entanglement of multipartite states and the Z-eigenvalue of tensors. Quantum Inf Process 21, 102 (2022). https://doi.org/10.1007/s11128-022-03434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03434-8

Keywords

Navigation